机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
24期
130-136
,共7页
客车防侧翻%鲁棒控制%多种群遗传优化%汽车主动安全
客車防側翻%魯棒控製%多種群遺傳優化%汽車主動安全
객차방측번%로봉공제%다충군유전우화%기차주동안전
passenger car rollover prevention%robust control%multi-population genetic optimization%vehicle active safety
为改善客车主动防侧翻能力,提出多种群遗传优化的防侧翻鲁棒控制方法。考虑车轮侧倾外倾、侧倾转向、悬架变形外倾和变形转向对轮胎侧偏特性影响,以及客车垂向与侧倾运动的耦合特性,建立6自由度客车侧翻动力学模型;针对客车的实际干扰及参数不确定性,以最大横向载荷转移率为控制目标,融合差动制动原理设计客车主动防侧翻的鲁棒控制方法;应用多种群遗传理论对控制器的权函数进行动态优化,增强控制系统的抗干扰能力;选取J-Turn 及Worst-Case典型侧翻工况进行数值仿真,分析防侧翻控制方法对不同行驶工况的适用性、前轮转向干扰及路面干扰下的抗干扰稳定性以及簧载质量和车速变化时参数摄动鲁棒性。结果表明该方法能将客车侧翻危险速度提高75%以上,有效改善客车主动防侧翻能力;且对不同行驶工况、不同类型干扰及参数变化均有强鲁棒性。
為改善客車主動防側翻能力,提齣多種群遺傳優化的防側翻魯棒控製方法。攷慮車輪側傾外傾、側傾轉嚮、懸架變形外傾和變形轉嚮對輪胎側偏特性影響,以及客車垂嚮與側傾運動的耦閤特性,建立6自由度客車側翻動力學模型;針對客車的實際榦擾及參數不確定性,以最大橫嚮載荷轉移率為控製目標,融閤差動製動原理設計客車主動防側翻的魯棒控製方法;應用多種群遺傳理論對控製器的權函數進行動態優化,增彊控製繫統的抗榦擾能力;選取J-Turn 及Worst-Case典型側翻工況進行數值倣真,分析防側翻控製方法對不同行駛工況的適用性、前輪轉嚮榦擾及路麵榦擾下的抗榦擾穩定性以及簧載質量和車速變化時參數攝動魯棒性。結果錶明該方法能將客車側翻危險速度提高75%以上,有效改善客車主動防側翻能力;且對不同行駛工況、不同類型榦擾及參數變化均有彊魯棒性。
위개선객차주동방측번능력,제출다충군유전우화적방측번로봉공제방법。고필차륜측경외경、측경전향、현가변형외경화변형전향대륜태측편특성영향,이급객차수향여측경운동적우합특성,건립6자유도객차측번동역학모형;침대객차적실제간우급삼수불학정성,이최대횡향재하전이솔위공제목표,융합차동제동원리설계객차주동방측번적로봉공제방법;응용다충군유전이론대공제기적권함수진행동태우화,증강공제계통적항간우능력;선취J-Turn 급Worst-Case전형측번공황진행수치방진,분석방측번공제방법대불동행사공황적괄용성、전륜전향간우급로면간우하적항간우은정성이급황재질량화차속변화시삼수섭동로봉성。결과표명해방법능장객차측번위험속도제고75%이상,유효개선객차주동방측번능력;차대불동행사공황、불동류형간우급삼수변화균유강로봉성。
In order to improve performance of passenger car rollover prevention, the robust control strategy with multi-population genetic optimization is presented. Taking the roll casting, roll steering, and the coupling relationship between vertical motion and roll motion into consideration, a six degrees of freedom model is established on the rollover dynamic theory of passenger car. As a control target, the maximum lateral-load transfer ratio(LTR) is applied to the robust control strategy for passenger car rollover prevention with differential braking. To enhance the anti-disturbance capability, the multi-population genetic methodology is used to optimize the weight function of controller. Some characteristics of the control strategy are discussed by numerical cases, such as the adaptive ability of the strategy in two typical driving conditions including J-Turn and Worst-Case, and the robustness of the strategy under the front wheel steering interference and pavement interference, as well as the sprung mass and speed variation. The results show that the critical velocity can be increased by over 75%, and the strategy is successful with good robustness at various driving conditions, external disturbances and parameter perturbations.