工程塑料应用
工程塑料應用
공정소료응용
ENGINEERING PLASTICS APPLICATION
2014年
12期
11-14
,共4页
李萍%季铁正%陈婷%谷敬凯%刘欢
李萍%季鐵正%陳婷%穀敬凱%劉歡
리평%계철정%진정%곡경개%류환
石墨烯微片%环氧树脂%复合材料%电性能%正温度系数效应
石墨烯微片%環氧樹脂%複閤材料%電性能%正溫度繫數效應
석묵희미편%배양수지%복합재료%전성능%정온도계수효응
graphene nanosheet%epoxy resin%composite%electrical property%PTC effect
以KNG–180石墨烯微片(GNSs)为导电填料,双酚A型环氧树脂(EP) E–54为基体,并分别用2-乙基-4-甲基咪唑(2,4-EMI)和甲基四氢邻苯二甲酸酐(MeTHPA)为固化剂,采用超声分散法制备了EP/GNSs导电复合材料。研究了不同固化剂及GNSs含量对EP/GNSs复合材料电性能的影响。结果表明,两种固化剂固化的复合材料均具有明显的导电逾渗行为和正温度系数(PTC)效应;2,4-EMI固化的复合材料的逾渗阈值为5.1%,MeTHPA固化的为4.5%;MeTHPA固化的复合材料具有更强的PTC效应和更低的室温电阻率,但大量实验发现MeTHPA固化的复合材料电性能实验结果重复性相对较差,且易存在负温度系数效应,故仍采用2,4-EMI作为EP/GNSs导电复合材料的固化剂。随GNSs含量增加,2,4–EMI固化的复合材料室温电阻率逐渐降低,PTC强度先升高后降低,当GNSs质量分数达到8%时,复合材料的PTC强度最高,达到2.3,且经过3次热循环之后,其阻–温曲线的热循环稳定性变好。
以KNG–180石墨烯微片(GNSs)為導電填料,雙酚A型環氧樹脂(EP) E–54為基體,併分彆用2-乙基-4-甲基咪唑(2,4-EMI)和甲基四氫鄰苯二甲痠酐(MeTHPA)為固化劑,採用超聲分散法製備瞭EP/GNSs導電複閤材料。研究瞭不同固化劑及GNSs含量對EP/GNSs複閤材料電性能的影響。結果錶明,兩種固化劑固化的複閤材料均具有明顯的導電逾滲行為和正溫度繫數(PTC)效應;2,4-EMI固化的複閤材料的逾滲閾值為5.1%,MeTHPA固化的為4.5%;MeTHPA固化的複閤材料具有更彊的PTC效應和更低的室溫電阻率,但大量實驗髮現MeTHPA固化的複閤材料電性能實驗結果重複性相對較差,且易存在負溫度繫數效應,故仍採用2,4-EMI作為EP/GNSs導電複閤材料的固化劑。隨GNSs含量增加,2,4–EMI固化的複閤材料室溫電阻率逐漸降低,PTC彊度先升高後降低,噹GNSs質量分數達到8%時,複閤材料的PTC彊度最高,達到2.3,且經過3次熱循環之後,其阻–溫麯線的熱循環穩定性變好。
이KNG–180석묵희미편(GNSs)위도전전료,쌍분A형배양수지(EP) E–54위기체,병분별용2-을기-4-갑기미서(2,4-EMI)화갑기사경린분이갑산항(MeTHPA)위고화제,채용초성분산법제비료EP/GNSs도전복합재료。연구료불동고화제급GNSs함량대EP/GNSs복합재료전성능적영향。결과표명,량충고화제고화적복합재료균구유명현적도전유삼행위화정온도계수(PTC)효응;2,4-EMI고화적복합재료적유삼역치위5.1%,MeTHPA고화적위4.5%;MeTHPA고화적복합재료구유경강적PTC효응화경저적실온전조솔,단대량실험발현MeTHPA고화적복합재료전성능실험결과중복성상대교차,차역존재부온도계수효응,고잉채용2,4-EMI작위EP/GNSs도전복합재료적고화제。수GNSs함량증가,2,4–EMI고화적복합재료실온전조솔축점강저,PTC강도선승고후강저,당GNSs질량분수체도8%시,복합재료적PTC강도최고,체도2.3,차경과3차열순배지후,기조–온곡선적열순배은정성변호。
Using KNG-180 graphen nanosheets (GNSs) as the conductive filler,bisphenol A type epoxy resin (EP) E-54 as the matrix material,2-ethyl-4-methyl imidazole (2,4-EMI) and methyl tetrahydro phthalic anhydride (MeTHPA) as curing agent respectively,EP/GNSs conductive composites were prepared by ultrasonic dispersion. The influences of the two curing agents and GNSs contents on electrical properties of the composites were studied. The results show that the composites cured by the two curing agents all have obvious conductive percolation behaviors and positive temperature coefficient (PTC) effects. The percolation threshold of the composite cured by 2,4-EMI and MeTHPA is 5.1%and 4.5%respectively. When using MeTHPA as curing agent, the composites has a lower room temperature resistivity and stronger PTC effect,but it is found that the composite cured by MeTHPA has poor repeatability of the electrical properties experiment results and is easy to exist negative temperature coefficient (NTC) effect through a large number of repeatability experiments,so 2,4-EMI is still used as curing agent of the composites. With the increase of GNSs content,the room temperature resistivity of the composite cured by 2,4-EMI decreases and the PTC intensity increases firstly and decreases lastly. When the mass fraction of GNSs is 8%,the PTC intensity of the composite cured by 2,4-EMI reaches 2.3,and after three thermal cycles,the thermal cycle stability of the resistance-temperature characteristics curves for the composite cured by 2, 4-EMI becomes better.