表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2015年
2期
55-59,82
,共6页
杨勇%赵靖宇%李静%杨景凤%赵彬%孙玉福
楊勇%趙靖宇%李靜%楊景鳳%趙彬%孫玉福
양용%조정우%리정%양경봉%조빈%손옥복
氩气保护%碳化钨%熔覆层%耐磨性
氬氣保護%碳化鎢%鎔覆層%耐磨性
아기보호%탄화오%용복층%내마성
argon gas protection%tungsten carbide%cladding layer%wear resistance
目的:改善Q235钢板的耐磨性,以取代65 Mn在振动筛筛板中的应用。方法采用电阻丝加热非真空熔覆技术,在氩气保护条件下于Q235钢表面制备碳化钨/镍基合金复合熔覆层。通过SEM 和XRD观察分析熔覆层与基体的结合方式、碳化钨分布、熔覆层组织及相组成,通过硬度测试及磨损试验,分析碳化钨对熔覆层耐磨性的影响。结果熔覆层与钢基体达到冶金结合。熔覆层主要由奥氏体、碳化钨、碳化物及硼碳复合化合物等相组成,碳化钨弥散分布其中。当碳化钨用量为熔覆粉末总质量的35%时,熔覆层硬度为47.3HRC,磨损率为0.08 mg/m,约是钢基体耐磨性的5倍,65Mn耐磨性的4倍。结论采用氩气保护制备的碳化钨熔覆层与基体结合良好,提高了钢基体的耐磨性。
目的:改善Q235鋼闆的耐磨性,以取代65 Mn在振動篩篩闆中的應用。方法採用電阻絲加熱非真空鎔覆技術,在氬氣保護條件下于Q235鋼錶麵製備碳化鎢/鎳基閤金複閤鎔覆層。通過SEM 和XRD觀察分析鎔覆層與基體的結閤方式、碳化鎢分佈、鎔覆層組織及相組成,通過硬度測試及磨損試驗,分析碳化鎢對鎔覆層耐磨性的影響。結果鎔覆層與鋼基體達到冶金結閤。鎔覆層主要由奧氏體、碳化鎢、碳化物及硼碳複閤化閤物等相組成,碳化鎢瀰散分佈其中。噹碳化鎢用量為鎔覆粉末總質量的35%時,鎔覆層硬度為47.3HRC,磨損率為0.08 mg/m,約是鋼基體耐磨性的5倍,65Mn耐磨性的4倍。結論採用氬氣保護製備的碳化鎢鎔覆層與基體結閤良好,提高瞭鋼基體的耐磨性。
목적:개선Q235강판적내마성,이취대65 Mn재진동사사판중적응용。방법채용전조사가열비진공용복기술,재아기보호조건하우Q235강표면제비탄화오/얼기합금복합용복층。통과SEM 화XRD관찰분석용복층여기체적결합방식、탄화오분포、용복층조직급상조성,통과경도측시급마손시험,분석탄화오대용복층내마성적영향。결과용복층여강기체체도야금결합。용복층주요유오씨체、탄화오、탄화물급붕탄복합화합물등상조성,탄화오미산분포기중。당탄화오용량위용복분말총질량적35%시,용복층경도위47.3HRC,마손솔위0.08 mg/m,약시강기체내마성적5배,65Mn내마성적4배。결론채용아기보호제비적탄화오용복층여기체결합량호,제고료강기체적내마성。
ABSTRACT:Objective To improve the wear resistance of Q235 steel sheet, and to replace the application of 65Mn in the sieve plate of shaker screen. Methods Tungsten carbide/Nickle-based alloy composite cladding layer was prepared on the surface of Q235 steel plate under the protection of argon gas by resistance wire heating non-vacuum cladding technique. SEM and XRD were used to observe and analyze the combination mode of the cladding layer and the substrate, tungsten carbide distribution, the organi-zation of cladding layer and the phase composition, meanwhile, the Rockwell hardness tester and wear tester were used to test the rock hardness and the wear rate of cladding layer, and analyze the effect of tungsten carbide on the wear resistance of the cladding layer. Results The steel substrate and the cladding layer achieved metallurgical bonding, and the microstructure of the cladding layer mainly consisted of binding phase, tungsten carbide, carbide and boron carbon composite compounds, where the distribution of tungsten carbide was well-proportioned in the cladding layer. With 35% WC content in the cladding layer alloy powder, its rock hardness reached 47. 3HRC and the wear rate was 0. 08 mg/m, which was 5 folds higher than the wear resistance of the steel sub-strate and 4 folds higher than that of 65Mn. Conclusion The tungsten carbide composite cladding layer prepared with argon gas pro-tection was well bonded with the steel substrate and improved the wear resistance of the steel substrate.