光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2015年
2期
28-34
,共7页
秦承运%沙巍%张星祥%任建岳
秦承運%沙巍%張星祥%任建嶽
진승운%사외%장성상%임건악
空间反射镜%柔性结构%局部面形
空間反射鏡%柔性結構%跼部麵形
공간반사경%유성결구%국부면형
space mirror%flexible structure%local surface
对于采用背部支撑的空间相机反射镜,温度变化会造成其支撑孔附近的局部面形精度降低,形成局部环形缺陷,从而影响光学系统中对应视场的成像质量。为了提高反射镜的温度适应性,通过增加支撑结构的柔性,降低局部连接刚度的方法,优化设计出一种柔性结构。对反射镜组件进行仿真分析,结果表明,在反射镜组件温度降低4℃的情况下,优化结构后的反射镜的中间支撑孔附近的局部视场面形的PV=4.9 nm,RMS=1.0 nm,与优化前(PV=16.6 nm,RMS=3.5 nm)相比,精度提高了3倍;全局视场面形的PV=16.3 nm,RMS=3.2 nm,相比优化前(PV=30.2 nm,RMS=5.2 nm),精度也得到提高;反射镜组件在优化前的1阶基频为191 Hz,优化后的1阶基频为183HZ,数据基本保持不变;反射镜在重力作用各工况下,优化结构前后的全局视场面形的PV值和RMS值基本保持不变。说明新的柔性支撑结构在保证了反射镜动、静态刚度的前提下,提高了反射镜的温度适应性,降低了温度变化对反射镜支撑孔附近局部面形精度的影响,提高了光学系统局部视场下的成像质量,达到了提高全视场下成像质量的目的。
對于採用揹部支撐的空間相機反射鏡,溫度變化會造成其支撐孔附近的跼部麵形精度降低,形成跼部環形缺陷,從而影響光學繫統中對應視場的成像質量。為瞭提高反射鏡的溫度適應性,通過增加支撐結構的柔性,降低跼部連接剛度的方法,優化設計齣一種柔性結構。對反射鏡組件進行倣真分析,結果錶明,在反射鏡組件溫度降低4℃的情況下,優化結構後的反射鏡的中間支撐孔附近的跼部視場麵形的PV=4.9 nm,RMS=1.0 nm,與優化前(PV=16.6 nm,RMS=3.5 nm)相比,精度提高瞭3倍;全跼視場麵形的PV=16.3 nm,RMS=3.2 nm,相比優化前(PV=30.2 nm,RMS=5.2 nm),精度也得到提高;反射鏡組件在優化前的1階基頻為191 Hz,優化後的1階基頻為183HZ,數據基本保持不變;反射鏡在重力作用各工況下,優化結構前後的全跼視場麵形的PV值和RMS值基本保持不變。說明新的柔性支撐結構在保證瞭反射鏡動、靜態剛度的前提下,提高瞭反射鏡的溫度適應性,降低瞭溫度變化對反射鏡支撐孔附近跼部麵形精度的影響,提高瞭光學繫統跼部視場下的成像質量,達到瞭提高全視場下成像質量的目的。
대우채용배부지탱적공간상궤반사경,온도변화회조성기지탱공부근적국부면형정도강저,형성국부배형결함,종이영향광학계통중대응시장적성상질량。위료제고반사경적온도괄응성,통과증가지탱결구적유성,강저국부련접강도적방법,우화설계출일충유성결구。대반사경조건진행방진분석,결과표명,재반사경조건온도강저4℃적정황하,우화결구후적반사경적중간지탱공부근적국부시장면형적PV=4.9 nm,RMS=1.0 nm,여우화전(PV=16.6 nm,RMS=3.5 nm)상비,정도제고료3배;전국시장면형적PV=16.3 nm,RMS=3.2 nm,상비우화전(PV=30.2 nm,RMS=5.2 nm),정도야득도제고;반사경조건재우화전적1계기빈위191 Hz,우화후적1계기빈위183HZ,수거기본보지불변;반사경재중력작용각공황하,우화결구전후적전국시장면형적PV치화RMS치기본보지불변。설명신적유성지탱결구재보증료반사경동、정태강도적전제하,제고료반사경적온도괄응성,강저료온도변화대반사경지탱공부근국부면형정도적영향,제고료광학계통국부시장하적성상질량,체도료제고전시장하성상질량적목적。
For the use of mirrors in space camera back support, the change in temperature will cause a partial supporting surface accuracy of the hole near the lower annular formation of local defects, which affect the quality of the optical system corresponding to the imaging field of view. In order to improve the adaptability to temperature mirror support structure by increasing the flexibility, and reduce the local connection stiffness, design of a flexible structure is optimized. Mirror assembly simulation for analysis, in the mirror assembly temperature 4℃ lower case, optimize the structure of the reflector around the middle hole of the support as the local scene shaped PV=4.9 nm, RMS=1.0 nm. Compared with the former (PV=16.6 nm, RMS=3.5 nm), and its accuracy is improved by 3 times, the global field shape PV=16.3 nm, RMS=3.2 nm. Compared to before optimization (PV=30.2 nm, RMS=5.2 nm), its accuracy is improved. Mirror assembly in the 1 order frequency before the optimization is 191 Hz and after the optimization are 183 Hz, basically unchanged. Mirrors in various gravity conditions, depending on the global scene shaped to optimize PV and RMS values before and after the basic structure remains unchanged, which illustrate that the new flexible support structure ensures the mirror dynamic, static stiffness, improve the temperature adaptability of mirror, reduce the influence of temperature changes to the mirror support hole near the local surface shape accuracy, and improve the imaging quality of local field optical system and imaging quality of all field goal.