中国化学工程学报(英文版)
中國化學工程學報(英文版)
중국화학공정학보(영문판)
CHINESE JOURNAL OF CHEMICAL ENGINEERING
2015年
2期
425-434
,共10页
Supercritical pressure%Kerosene%Heat transfer
A research on the heat transfer performance of kerosene flowing in a vertical upward tube at supercritical pres-sure is presented. In the experiments, insights are offered on the effects of the factors such as mass flux, heat flux, and pressure. It is found that increasing mass flux reduces the wall temperature and separates the experimental section into three different parts, while increasing working pressure deteriorates heat transfer. The extended corresponding-state principle can be used for evaluating density and transport properties of kerosene, including its viscosity and thermal conductivity, at different temperatures and pressures under supercritical conditions. For getting the heat capacity, a Soave–Redlich–Kwong (SRK) equation of state is used. The correlation for predicting heat transfer of kerosene at supercritical pressure is established and shows good agreement with the experimen-tal data.