机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
3期
18-28
,共11页
刘建%葛世荣%朱华%唐超权
劉建%葛世榮%硃華%唐超權
류건%갈세영%주화%당초권
矿用救援机器人%动力匹配%粒子群算法%多目标优化
礦用救援機器人%動力匹配%粒子群算法%多目標優化
광용구원궤기인%동력필배%입자군산법%다목표우화
mine rescue robot%power matching%particle swarm optimization%multi-objective optimization
目前,矿用救援机器人只有通过动力系统参数的合理匹配解决其在复杂恶劣的井下环境中无法随时补充能源及防爆电池组对机器人动力性能影响严重的问题。为此,提出基于多目标粒子群优化算法的动力匹配设计方法。该方法根据矿用救援机器人动力性能要求,确定了其动力系统参数匹配的优化目标和约束条件;基于履带行驶动力学,并考虑防爆电池组对机器人动力性能的影响,建立矿用救援机器人动力匹配模型,确定动力系统参数匹配多目标优化的决策变量;通过多目标粒子群优化算法确定了矿用救援机器人动力系统参数匹配的合理取值范围。通过试验与优化前的设计相比,机器人的总质量降低了24.36%,续航时间增加了1倍,进而验证了该方法能够有效、快速地解决矿用救援机器人动力系统参数的合理匹配问题。
目前,礦用救援機器人隻有通過動力繫統參數的閤理匹配解決其在複雜噁劣的井下環境中無法隨時補充能源及防爆電池組對機器人動力性能影響嚴重的問題。為此,提齣基于多目標粒子群優化算法的動力匹配設計方法。該方法根據礦用救援機器人動力性能要求,確定瞭其動力繫統參數匹配的優化目標和約束條件;基于履帶行駛動力學,併攷慮防爆電池組對機器人動力性能的影響,建立礦用救援機器人動力匹配模型,確定動力繫統參數匹配多目標優化的決策變量;通過多目標粒子群優化算法確定瞭礦用救援機器人動力繫統參數匹配的閤理取值範圍。通過試驗與優化前的設計相比,機器人的總質量降低瞭24.36%,續航時間增加瞭1倍,進而驗證瞭該方法能夠有效、快速地解決礦用救援機器人動力繫統參數的閤理匹配問題。
목전,광용구원궤기인지유통과동력계통삼수적합리필배해결기재복잡악렬적정하배경중무법수시보충능원급방폭전지조대궤기인동력성능영향엄중적문제。위차,제출기우다목표입자군우화산법적동력필배설계방법。해방법근거광용구원궤기인동력성능요구,학정료기동력계통삼수필배적우화목표화약속조건;기우리대행사동역학,병고필방폭전지조대궤기인동력성능적영향,건립광용구원궤기인동력필배모형,학정동력계통삼수필배다목표우화적결책변량;통과다목표입자군우화산법학정료광용구원궤기인동력계통삼수필배적합리취치범위。통과시험여우화전적설계상비,궤기인적총질량강저료24.36%,속항시간증가료1배,진이험증료해방법능구유효、쾌속지해결광용구원궤기인동력계통삼수적합리필배문제。
At present, the coal mine rescue robot is without the power supply in the hazard and complex coal mine and the explosive-proof batteries unit influences dynamic performance very seriously. It is the only method to solve the two problems above by power matching and optimization. Therefore, the power matching design method based on multi-objective particle swarm optimization (PSO) is proposed. The optimization goal and constraint condition for power matching are confirmed by the analysis of the robot dynamic performance requirement. And the model of the robot power matching is established and the decision variables of multi-objective optimization are ensured, which are based on the tracked vehicle dynamic and the influence for the dynamic performance by explosive-proof batteries unit. Finally, it is calculated which the reasonable value range of the parameters of power matching. The test indicates that the mass of the coal mine rescue robot has reduced by 24.36% and the time of endurance is double. As well as, it is supported the multi-objective particle swarm optimization could effectively and rapidly solve the power matching of the coal mine rescue robot.