催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2015年
3期
372-379
,共8页
氮化碳%硫化镉%光催化%污染物降解
氮化碳%硫化鎘%光催化%汙染物降解
담화탄%류화력%광최화%오염물강해
Carbon nitride%Cadmium sulfide%Photocatalysis%Degradation of pollutants
以硫氰酸铵和氯化镉为原料,采用无模板混合高温煅烧法一步合成氮化碳/硫化镉纳米晶(C3N4/CdS)的复合半导体材料。采用X射线衍射、傅立叶变换红外光谱和透射电镜等技术对其结构和形貌进行了表征。以有机污染物罗丹明B (RhB)为模拟污染物对复合催化剂的可见光催化活性进行测试。结果表明, C3N4/CdS复合材料中CdS以六方相纳米晶的形式均匀分散; CdS的复合基本不改变C3N4主体结构及聚合度;与纯C3N4相比,复合材料在可见区的光吸收能力有所增强。合适的能带匹配有利于光生载流子的迁移,抑制了其复合速率。在可见光照射下,复合半导体能够更加快速的降解有机污染物,且保持很好的稳定性。
以硫氰痠銨和氯化鎘為原料,採用無模闆混閤高溫煅燒法一步閤成氮化碳/硫化鎘納米晶(C3N4/CdS)的複閤半導體材料。採用X射線衍射、傅立葉變換紅外光譜和透射電鏡等技術對其結構和形貌進行瞭錶徵。以有機汙染物囉丹明B (RhB)為模擬汙染物對複閤催化劑的可見光催化活性進行測試。結果錶明, C3N4/CdS複閤材料中CdS以六方相納米晶的形式均勻分散; CdS的複閤基本不改變C3N4主體結構及聚閤度;與純C3N4相比,複閤材料在可見區的光吸收能力有所增彊。閤適的能帶匹配有利于光生載流子的遷移,抑製瞭其複閤速率。在可見光照射下,複閤半導體能夠更加快速的降解有機汙染物,且保持很好的穩定性。
이류청산안화록화력위원료,채용무모판혼합고온단소법일보합성담화탄/류화력납미정(C3N4/CdS)적복합반도체재료。채용X사선연사、부립협변환홍외광보화투사전경등기술대기결구화형모진행료표정。이유궤오염물라단명B (RhB)위모의오염물대복합최화제적가견광최화활성진행측시。결과표명, C3N4/CdS복합재료중CdS이륙방상납미정적형식균균분산; CdS적복합기본불개변C3N4주체결구급취합도;여순C3N4상비,복합재료재가견구적광흡수능력유소증강。합괄적능대필배유리우광생재류자적천이,억제료기복합속솔。재가견광조사하,복합반도체능구경가쾌속적강해유궤오염물,차보지흔호적은정성。
A hybrid semiconductor composed of a carbon nitride/cadmium sulfide nanocomposite (C3N4/CdS) was synthesized by a template‐free one‐step calcination route at high temperature using ammoni‐um thiocyanate and cadmium chloride as starting materials. The crystal structure, composition and morphology of the hybrid samples were studied by X‐ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The photocatalytic degradation of Rhodamine B as a model compound was carried out to evaluate the photocatalytic activity of the nanocompo‐sites under visible light irradiation. Hexagonal CdS nanocrystals were uniformly distributed in the bulk C3N4. After coupling with CdS the basic C3N4 structure was mostly unchanged. The visible light absorption properties of the hybrid materials were enhanced. The as‐prepared C3N4/CdS hybrid photocatalyst exhibited superior degradation performance under visible light irradiation compared with pure C3N4. The well‐matched band energy improved the transfer efficiency of the photoin‐duced carriers and this was responsible for the enhanced photocatalytic activity and stability of the hybrid photocatalysts.