机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
2期
49-57
,共9页
张清东%周岁%张晓峰%张勃洋
張清東%週歲%張曉峰%張勃洋
장청동%주세%장효봉%장발양
拉弯矫直%塑性变形%浪形%解析法%有限元
拉彎矯直%塑性變形%浪形%解析法%有限元
랍만교직%소성변형%랑형%해석법%유한원
tension leveling%plasticity deformation%wave-shaped%analytical method%finite element
采用弹塑性力学分析方法,针对拉伸弯曲矫直机用于对具有初始位移缺陷(瓢曲浪形)薄带钢的浪形矫平过程进行机理建模,推导建立以带钢规格材质及初始浪形参数、拉矫工艺参数和拉矫机相关设备参数为自变量的拉矫变形过程浪形矫平功效的解析预测模型。通过定义拉矫过程中带钢宽向进入塑性变形的屈服区域边界位置作为中间变量,以及依次分别建立各项输入条件与屈服位置的关系、屈服位置与工艺条件的关系,建立浪形矫平预测模型的多变量微分方程组。为了验证该机理模型的正确性,分析初始浪形、材料强度、带钢尺寸等初始条件以及弯曲辊半径、拉矫张力等工艺条件对拉矫机对于带钢浪形的矫平改善能力的影响,并应用 ABAQUS 软件另行建立同样条件下薄带钢拉弯矫直过程的有限元模型,经计算并对比计算结果,两种方法的结果吻合良好。
採用彈塑性力學分析方法,針對拉伸彎麯矯直機用于對具有初始位移缺陷(瓢麯浪形)薄帶鋼的浪形矯平過程進行機理建模,推導建立以帶鋼規格材質及初始浪形參數、拉矯工藝參數和拉矯機相關設備參數為自變量的拉矯變形過程浪形矯平功效的解析預測模型。通過定義拉矯過程中帶鋼寬嚮進入塑性變形的屈服區域邊界位置作為中間變量,以及依次分彆建立各項輸入條件與屈服位置的關繫、屈服位置與工藝條件的關繫,建立浪形矯平預測模型的多變量微分方程組。為瞭驗證該機理模型的正確性,分析初始浪形、材料彊度、帶鋼呎吋等初始條件以及彎麯輥半徑、拉矯張力等工藝條件對拉矯機對于帶鋼浪形的矯平改善能力的影響,併應用 ABAQUS 軟件另行建立同樣條件下薄帶鋼拉彎矯直過程的有限元模型,經計算併對比計算結果,兩種方法的結果吻閤良好。
채용탄소성역학분석방법,침대랍신만곡교직궤용우대구유초시위이결함(표곡랑형)박대강적랑형교평과정진행궤리건모,추도건립이대강규격재질급초시랑형삼수、랍교공예삼수화랍교궤상관설비삼수위자변량적랍교변형과정랑형교평공효적해석예측모형。통과정의랍교과정중대강관향진입소성변형적굴복구역변계위치작위중간변량,이급의차분별건립각항수입조건여굴복위치적관계、굴복위치여공예조건적관계,건립랑형교평예측모형적다변량미분방정조。위료험증해궤리모형적정학성,분석초시랑형、재료강도、대강척촌등초시조건이급만곡곤반경、랍교장력등공예조건대랍교궤대우대강랑형적교평개선능력적영향,병응용 ABAQUS 연건령행건립동양조건하박대강랍만교직과정적유한원모형,경계산병대비계산결과,량충방법적결과문합량호。
A elastic-plastic mechanics analysis method is used to establish a analytical model of thin strip wave-shaped defects leveling mechanism, analyzing the initial wave shape, strength of materials, dimension of strip and other input conditions such as the size of the radius of curvature, global tension at the outer end, etc. Through straightening performance of wave-shaped steel can be significantly improved. The width of plastic zone of strip after processing is defined and analyzed and it is taken as an intermediate variable to establish the relationship among various strip parameters, strength of material and process parameters, and further multivariable differential equations with respect to prediction model of wave-shaped defect’s leveling improvement would be derived. In order to verify the correctness of the model, the article analyzes the impact of inputs as initial wave shape, strength, dimensions and process parameters like the radius of curvature, tension on the improved performance after straightening. Furthermore, a finite element method (FEM) model of tension leveling process in the same conditions and dimensions with analytical model is also created to verify and contrast the relevant conclusions and good agreement is achieved between two models. Analysis and modeling ideas in article are equally applicable to all forms of stretch bending, tension leveler, multi-roller straightening and other similar process.