岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2015年
z1期
2647-2658
,共12页
岩石力学%光滑粒子法%单轴压缩%岩石类材料
巖石力學%光滑粒子法%單軸壓縮%巖石類材料
암석역학%광활입자법%단축압축%암석류재료
rock mechanics%smoothed particle hydrodynamics(SPH) method%compressive failure process%rock-like material
岩石破坏问题是非连续问题。采用传统的有限元方法模拟岩石破坏时,计算结果依赖于网格,计算效率低。光滑粒子流体动力学(SPH)法主是一种模拟流体的无网格方法。对SPH法进行改进,将SPH法中流体的本构关系修正为弹脆性固体的本构关系,采用Weibull统计方法描述岩石材料的非均匀性,使SPH法能有效地模拟各向异性弹脆性岩石的破坏。改进的SPH法克服了有限元的缺点,在模拟裂纹启裂、扩展和连接时,计算结果不依赖网格,计算效率高。通过对单轴压缩条件下岩石破坏的数值计算结果表明:改进的SPH法能有效地理解和预测岩石材料的复杂破裂过程。
巖石破壞問題是非連續問題。採用傳統的有限元方法模擬巖石破壞時,計算結果依賴于網格,計算效率低。光滑粒子流體動力學(SPH)法主是一種模擬流體的無網格方法。對SPH法進行改進,將SPH法中流體的本構關繫脩正為彈脆性固體的本構關繫,採用Weibull統計方法描述巖石材料的非均勻性,使SPH法能有效地模擬各嚮異性彈脆性巖石的破壞。改進的SPH法剋服瞭有限元的缺點,在模擬裂紋啟裂、擴展和連接時,計算結果不依賴網格,計算效率高。通過對單軸壓縮條件下巖石破壞的數值計算結果錶明:改進的SPH法能有效地理解和預測巖石材料的複雜破裂過程。
암석파배문제시비련속문제。채용전통적유한원방법모의암석파배시,계산결과의뢰우망격,계산효솔저。광활입자류체동역학(SPH)법주시일충모의류체적무망격방법。대SPH법진행개진,장SPH법중류체적본구관계수정위탄취성고체적본구관계,채용Weibull통계방법묘술암석재료적비균균성,사SPH법능유효지모의각향이성탄취성암석적파배。개진적SPH법극복료유한원적결점,재모의렬문계렬、확전화련접시,계산결과불의뢰망격,계산효솔고。통과대단축압축조건하암석파배적수치계산결과표명:개진적SPH법능유효지리해화예측암석재료적복잡파렬과정。
The problem of rock failure is discontinuous one. The numerical results depend on meshes and computational efficiency is low when finite element method is applied to simulate the failure of rock. Standard smoothed particle hydrodynamics(SPH) method is mesh-free numerical one,which is mainly applied to model the problem of fluid. In this paper,a corrected smoothed particle hydrodynamics,in which constitutive relation of fluid is replaced by constitutive relation of elasto-brittle solid and Weibull statistical approach is used to describe the heterogeneity of the rock-like materials,is developed to simulate the failure of heterogeneous elasto-brittle rock. The corrected smoothed particle hydrodynamics overcomes the shortcomings of finite element method. The numerical results is independence of meshes and computational efficiency is high when the corrected smoothed particle hydrodynamics is applied to simulate growth and coalescence of cracks. The corrected smoothed particle hydrodynamics is helpful to understanding and predicting complex fracture processes of rock-like materials.