重庆理工大学学报(自然科学版)
重慶理工大學學報(自然科學版)
중경리공대학학보(자연과학판)
JOURNAL OF CHONGQING INSTITUTE OF TECHNOLOGY
2015年
4期
132-135
,共4页
随机规划%逼近解%上半收敛
隨機規劃%逼近解%上半收斂
수궤규화%핍근해%상반수렴
stochastic programming%approximation solution%upper semi-convergence
为了研究极大极小随机规划问题最优值的收敛性,先把极大极小随机规划问题转化为二层极小随机规划模型,通过二层极小随机规划模型得到其解的收敛性条件,然后在进一步假设上层原问题有唯一最优解的情况下,得到其逼近问题的最优值上半收敛于原问题的唯一最优值。
為瞭研究極大極小隨機規劃問題最優值的收斂性,先把極大極小隨機規劃問題轉化為二層極小隨機規劃模型,通過二層極小隨機規劃模型得到其解的收斂性條件,然後在進一步假設上層原問題有唯一最優解的情況下,得到其逼近問題的最優值上半收斂于原問題的唯一最優值。
위료연구겁대겁소수궤규화문제최우치적수렴성,선파겁대겁소수궤규화문제전화위이층겁소수궤규화모형,통과이층겁소수궤규화모형득도기해적수렴성조건,연후재진일보가설상층원문제유유일최우해적정황하,득도기핍근문제적최우치상반수렴우원문제적유일최우치。
In order to study the convergence of the optimal minimax stochastic programming problem value,at first,the minimax problem was transformed stochastic programming into two layers of mini-mal stochastic programming model,and we obtained the convergence conditions through two layers of minimal stochastic programming model. Then suppose further that the upper primary problem has a u-nique optimal solution under the condition of the unique optimal approximation,the problem of opti-mal value of semi converges to the value of the original problem was obtained.