物理学报
物理學報
물이학보
2015年
9期
097101-1-097101-6
,共1页
DFT+U%Ueff值%UO2%性质
DFT+U%Ueff值%UO2%性質
DFT+U%Ueff치%UO2%성질
DFT+U%the Hubbard U parameters%UO2%property
本文采用第一性原理的方法系统研究了UO2的晶体结构、电子结构和弹性性质.在计算中采用广义梯度近似结合Hubbard U项描述电子的局域强关联效应.首先通过计算能带带隙大小并与理论值比较的方法,得到了合理的有效库仑相关作用能(Ueff)的取值,同时通过态密度的计算,进一步验证了Ueff取值的合理性.计算得到UO2中U原子的Ueff值为3.30 eV (Ueff =U ?J , U =3.70 eV, J =0.40 eV).应用此参数计算得到的UO2晶格常数为5.54?,带隙宽度为2.17 eV.该结果优于目前现有的研究结果,同时在同样的Ueff值条件下计算所得到的弹性常数与实验值也符合得较好.相较于之前的基于实验测量并分析得到的Ueff值,我们所采用的方法在对UO2性质描述上更为准确.不同的有效库仑相关作用能取值下的态密度结果表明,有效库仑相关作用能的大小可以影响铀原子5f电子轨道的分布.
本文採用第一性原理的方法繫統研究瞭UO2的晶體結構、電子結構和彈性性質.在計算中採用廣義梯度近似結閤Hubbard U項描述電子的跼域彊關聯效應.首先通過計算能帶帶隙大小併與理論值比較的方法,得到瞭閤理的有效庫崙相關作用能(Ueff)的取值,同時通過態密度的計算,進一步驗證瞭Ueff取值的閤理性.計算得到UO2中U原子的Ueff值為3.30 eV (Ueff =U ?J , U =3.70 eV, J =0.40 eV).應用此參數計算得到的UO2晶格常數為5.54?,帶隙寬度為2.17 eV.該結果優于目前現有的研究結果,同時在同樣的Ueff值條件下計算所得到的彈性常數與實驗值也符閤得較好.相較于之前的基于實驗測量併分析得到的Ueff值,我們所採用的方法在對UO2性質描述上更為準確.不同的有效庫崙相關作用能取值下的態密度結果錶明,有效庫崙相關作用能的大小可以影響鈾原子5f電子軌道的分佈.
본문채용제일성원리적방법계통연구료UO2적정체결구、전자결구화탄성성질.재계산중채용엄의제도근사결합Hubbard U항묘술전자적국역강관련효응.수선통과계산능대대극대소병여이론치비교적방법,득도료합리적유효고륜상관작용능(Ueff)적취치,동시통과태밀도적계산,진일보험증료Ueff취치적합이성.계산득도UO2중U원자적Ueff치위3.30 eV (Ueff =U ?J , U =3.70 eV, J =0.40 eV).응용차삼수계산득도적UO2정격상수위5.54?,대극관도위2.17 eV.해결과우우목전현유적연구결과,동시재동양적Ueff치조건하계산소득도적탄성상수여실험치야부합득교호.상교우지전적기우실험측량병분석득도적Ueff치,아문소채용적방법재대UO2성질묘술상경위준학.불동적유효고륜상관작용능취치하적태밀도결과표명,유효고륜상관작용능적대소가이영향유원자5f전자궤도적분포.
The crystal structure, electronic structure and elastic constants of uranium dioxide are investigated using first-principles calculations, wherein the generalized gradient approximation and Hubbard U terms are used in the framework of density-functional theory. On-site Coulomb interactions with the simplified rotational invariant approach (the Dudarev approach), fully relativistic calculations for the core electrons (represented as a pseudopotential), and scalar relativistic approximations for the valence electrons are employed to account for the relativistic effects and electron correlation of 5f electrons in UO2. The Hubbard U parameters (Ueff =U?J, U =3.70 eV, J =0.40 eV) are derived by calculating the band gap width of UO2. In addition, the electron density of states calculation suggests that the following value of band gap is appropriate. The calculated lattice constant is 5.54 ?, and the band gap width is 2.17 eV which shows that UO2 is a semiconductor. Its density of states shows that the U 5f orbital contributes to the peaks immediately adjacent to the Fermi level, which agrees with the U 5f2 configuration, while the O 2p orbital plays a dominant role in the bonding band at approximately?6 to?2 eV. Results obtained above have been compared with available experimental data, and also discussed in relation to previous calculations. Above results are better than existing ones gained by others. Analyzing the density of states for different Hubbard U parameters, we find that the Hubbard U parameters can influence the distribution of U 5f electronic orbit.