红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
4期
1329-1334
,共6页
混合等离子体波导%表面等离子体激元%传输长度%有效模场面积%耦合长度
混閤等離子體波導%錶麵等離子體激元%傳輸長度%有效模場麵積%耦閤長度
혼합등리자체파도%표면등리자체격원%전수장도%유효모장면적%우합장도
hybrid plasma waveguide%surface plasmon%propagation length%effective mode area%coupling length
首先建立了一种由相同宽度的金属带,SiO2间隔层与Si介质脊构成的导体-夹层-硅基结构(Conductor-Gap-Silicon,CGS)的混合等离子激元波导模型,分析了间隔层的厚度以及波导宽度对模式传输特性的影响,提出了模场面积为0.08μm2与430μm传输距离的设计方案。在此基础上,通过增加数值模型中介质脊的宽度而形成硅基板CGS波导结构。数值分析结果表明:硅基板CGS波导可将模式有效折射率增至2.8,同时传输长度能够延长到1.74 mm。并且模场面积可以进一步压缩到0.025μm2。此外,硅基板CGS波导制作更加简便,并可采用现有COMS制作技术完成,进而具有较大的实用前景。
首先建立瞭一種由相同寬度的金屬帶,SiO2間隔層與Si介質脊構成的導體-夾層-硅基結構(Conductor-Gap-Silicon,CGS)的混閤等離子激元波導模型,分析瞭間隔層的厚度以及波導寬度對模式傳輸特性的影響,提齣瞭模場麵積為0.08μm2與430μm傳輸距離的設計方案。在此基礎上,通過增加數值模型中介質脊的寬度而形成硅基闆CGS波導結構。數值分析結果錶明:硅基闆CGS波導可將模式有效摺射率增至2.8,同時傳輸長度能夠延長到1.74 mm。併且模場麵積可以進一步壓縮到0.025μm2。此外,硅基闆CGS波導製作更加簡便,併可採用現有COMS製作技術完成,進而具有較大的實用前景。
수선건립료일충유상동관도적금속대,SiO2간격층여Si개질척구성적도체-협층-규기결구(Conductor-Gap-Silicon,CGS)적혼합등리자격원파도모형,분석료간격층적후도이급파도관도대모식전수특성적영향,제출료모장면적위0.08μm2여430μm전수거리적설계방안。재차기출상,통과증가수치모형중개질척적관도이형성규기판CGS파도결구。수치분석결과표명:규기판CGS파도가장모식유효절사솔증지2.8,동시전수장도능구연장도1.74 mm。병차모장면적가이진일보압축도0.025μm2。차외,규기판CGS파도제작경가간편,병가채용현유COMS제작기술완성,진이구유교대적실용전경。
A subwavelength conductor gap silicon (CGS) hybrid plasma waveguide was theoretically analyzed, which consisted of a thin low-index layer sandwiched between a silver strip and a high index silicon structure. The guiding properties of surface plasmon polaritons, such as propagation length and mode field area, were investigated for different rib widths and silica gap layer thickness. As a result, an effective modal area of 0.08 μm2 and the propagation length of 430 μm can be achieved simultaneously. Based on which, the silicon slab based CGS waveguide can be formed by increasing the width of silicon rib, it should be noted that the structure can generate the larger effective refractive index value of 2.8 and the propagation length of 1.74 mm, moreover, it provided a more strong confinement of the optical field such as 0.025 μm2 thickness SiO2 gap. In addition, more simple structure and CMOS compatible fabrication process make these conductor gap silicon plasmonic waveguide a promising candidate for realizing high integration density plasmonic circuits.