红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
4期
1218-1222
,共5页
工作空间测量定位系统%最佳测量点%条件数%粒子群算法
工作空間測量定位繫統%最佳測量點%條件數%粒子群算法
공작공간측량정위계통%최가측량점%조건수%입자군산법
wMPS%optimal measurement point%condition number%Particle Swarm Optimization algorithm
工作空间测量定位系统(workspace Measuring and Positioning System,wMPS)是一种基于旋转激光扫描平面交会的室内大尺寸定位系统。它可实现计量精度的三维坐标测量,主要应用于制造加工及装配领域的测量和检测任务。作为一种大尺寸的测量系统,与中小尺寸测量系统相比,它的测量空间与测量精度的矛盾更加突出。如何寻找此系统所覆盖测量空间内精度最高的一个点或者以此点为中心的一个区域是一个非常重要而且有意义的问题。从该测量系统的测量原理出发,与传统经纬仪相对比,给出一种利用解算方程系数矩阵的条件数作为评价空间交会优劣的评价模型,继而引入粒子群算法来求解测量空间内的最佳测量点,实验结果表明:评价模型和对应的求解方法是正确的,也是有效的,利用此方法得到的测量点为中心的区域坐标不确定度最小,而且此方法为今后的发射站布局问题的研究打下了有益的基础。
工作空間測量定位繫統(workspace Measuring and Positioning System,wMPS)是一種基于鏇轉激光掃描平麵交會的室內大呎吋定位繫統。它可實現計量精度的三維坐標測量,主要應用于製造加工及裝配領域的測量和檢測任務。作為一種大呎吋的測量繫統,與中小呎吋測量繫統相比,它的測量空間與測量精度的矛盾更加突齣。如何尋找此繫統所覆蓋測量空間內精度最高的一箇點或者以此點為中心的一箇區域是一箇非常重要而且有意義的問題。從該測量繫統的測量原理齣髮,與傳統經緯儀相對比,給齣一種利用解算方程繫數矩陣的條件數作為評價空間交會優劣的評價模型,繼而引入粒子群算法來求解測量空間內的最佳測量點,實驗結果錶明:評價模型和對應的求解方法是正確的,也是有效的,利用此方法得到的測量點為中心的區域坐標不確定度最小,而且此方法為今後的髮射站佈跼問題的研究打下瞭有益的基礎。
공작공간측량정위계통(workspace Measuring and Positioning System,wMPS)시일충기우선전격광소묘평면교회적실내대척촌정위계통。타가실현계량정도적삼유좌표측량,주요응용우제조가공급장배영역적측량화검측임무。작위일충대척촌적측량계통,여중소척촌측량계통상비,타적측량공간여측량정도적모순경가돌출。여하심조차계통소복개측량공간내정도최고적일개점혹자이차점위중심적일개구역시일개비상중요이차유의의적문제。종해측량계통적측량원리출발,여전통경위의상대비,급출일충이용해산방정계수구진적조건수작위평개공간교회우렬적평개모형,계이인입입자군산법래구해측량공간내적최가측량점,실험결과표명:평개모형화대응적구해방법시정학적,야시유효적,이용차방법득도적측량점위중심적구역좌표불학정도최소,이차차방법위금후적발사참포국문제적연구타하료유익적기출。
The workspace Measuring and Positioning System (wMPS) is an indoor large-scale positioning system based on the intersection of rotating laser planes. It can provide 3D coordinates with metrological accuracy, applicable in the measurement and test tasks of manufacturing and assembly. As a large-scale measurement system, the contradiction between its measurement range and measurement precision is more intense than the small-to-medium-scale measurement system. How to find the optimal measurement point or the optimal measurement area centered with this point is an important and significant problem. Moving away from the measurement principle of the measurement system, compared with the traditional theodolite, an evaluation model was presented, which used the condition number of the coefficient matrix of the measurement equation as the indicator of the quality of intersection, then the Particle Swarm Optimization algorithm was introduced to solve the optimal measurement point. The experimental results show that the proposed evaluation model and the problem-solving method are correct and effective; they produce the minimum uncertainty around the calculated optimal point, and lay the foundation for the future research on the transmitter-layout problem.