红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
4期
1260-1266
,共7页
主动光学望远镜%俯仰-方位轴系%轴系晃动误差%谐波理论
主動光學望遠鏡%俯仰-方位軸繫%軸繫晃動誤差%諧波理論
주동광학망원경%부앙-방위축계%축계황동오차%해파이론
active optics telescope%alt-azimuth shafting%shafting wobble error%harmonic theory
为研究大型望远镜薄镜面主动光学的核心技术,以600 mm望远镜为缩比系统,采用高精度标准轴承设计了具有快速装调、高互换性和便于维护等特点的俯仰-方位轴系结构。俯仰轴系由向心角接触球轴承构成,方位轴系由推力球轴承和双列圆柱滚子轴承构成。采用有限元软件Patran仿真得到了系统的前三阶固有频率和振型。分析了影响轴系回转精度的误差源,采用谐波理论对轴系误差测量结果进行了处理,得到俯仰轴系晃动误差为4.2",方位轴系晃动误差为9.3"。望远镜在外场观星试验中得到了比较理想的成像效果,验证了轴系结构设计的合理性和正确性,并为中小型望远镜高精度轴系的研制提供了设计依据和技术途径。
為研究大型望遠鏡薄鏡麵主動光學的覈心技術,以600 mm望遠鏡為縮比繫統,採用高精度標準軸承設計瞭具有快速裝調、高互換性和便于維護等特點的俯仰-方位軸繫結構。俯仰軸繫由嚮心角接觸毬軸承構成,方位軸繫由推力毬軸承和雙列圓柱滾子軸承構成。採用有限元軟件Patran倣真得到瞭繫統的前三階固有頻率和振型。分析瞭影響軸繫迴轉精度的誤差源,採用諧波理論對軸繫誤差測量結果進行瞭處理,得到俯仰軸繫晃動誤差為4.2",方位軸繫晃動誤差為9.3"。望遠鏡在外場觀星試驗中得到瞭比較理想的成像效果,驗證瞭軸繫結構設計的閤理性和正確性,併為中小型望遠鏡高精度軸繫的研製提供瞭設計依據和技術途徑。
위연구대형망원경박경면주동광학적핵심기술,이600 mm망원경위축비계통,채용고정도표준축승설계료구유쾌속장조、고호환성화편우유호등특점적부앙-방위축계결구。부앙축계유향심각접촉구축승구성,방위축계유추력구축승화쌍렬원주곤자축승구성。채용유한원연건Patran방진득도료계통적전삼계고유빈솔화진형。분석료영향축계회전정도적오차원,채용해파이론대축계오차측량결과진행료처리,득도부앙축계황동오차위4.2",방위축계황동오차위9.3"。망원경재외장관성시험중득도료비교이상적성상효과,험증료축계결구설계적합이성화정학성,병위중소형망원경고정도축계적연제제공료설계의거화기술도경。
An alt-azimuth shafting structure with high precision standard bearings was designed for a 600 mm scaled down model telescope system, which is for studying the large telescope thin mirror active optics technology. It has more benefits including quick installation and adjusting, high interchangeability, and easy maintenance. The altitude shafting is consisted of a pair of radial angular contact ball bearings. The azimuth shafting is consisted of thrust ball bearing and double-row cylinder roller bearing. The lowest three order natural frequencies and the modes were resolved by the finite element simulation software Patran. The error sources were analyzed, which are mainly affecting the shafting rotating accuracy. The measuring results were processed by harmonic theory and it shows good performance in the altitude shafting wobble error of 4.2", and the azimuth shafting wobble error of 9.3". Desirable imaging was got in the stars observing test at the testing field. The design can prove reliability of the shafting structure, and offer a reliable guidance and advanced path for developing the high precision shafting of medium and small sized telescope.