红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
4期
1354-1358
,共5页
宋昭远%刘晓东%张思远%黄金华%张磊磊
宋昭遠%劉曉東%張思遠%黃金華%張磊磊
송소원%류효동%장사원%황금화%장뢰뢰
光子晶体光纤%光子带隙%全矢量平面波展开法%全固态
光子晶體光纖%光子帶隙%全矢量平麵波展開法%全固態
광자정체광섬%광자대극%전시량평면파전개법%전고태
photonic crystal fiber%photonic band gap%full-vector plane-wave expansion method%all-solid-state
利用全矢量平面波展开法对三角形排布孔包层-圆纤芯结构的光子晶体光纤的光子带隙特性进行了数值模拟,对比研究了传统光子晶体光纤(空气-石英纤芯结构)和全固态光子晶体光纤(非空气-石英纤芯结构)的光子带隙(导模)与结构参数(包层孔直径 dclh、包层孔间距和包层孔填充比f)的关系,设计出了一组合适的结构参数(纤芯直径dco=5.3μm,包层孔材料的折射率nclh=1.65,dclh=1.0μm,=2.0μm,f=0.7),可以使相应的全固态光子晶体光纤工作在1550 nm的现代光通信波长上,且光子带隙可以达100 nm。
利用全矢量平麵波展開法對三角形排佈孔包層-圓纖芯結構的光子晶體光纖的光子帶隙特性進行瞭數值模擬,對比研究瞭傳統光子晶體光纖(空氣-石英纖芯結構)和全固態光子晶體光纖(非空氣-石英纖芯結構)的光子帶隙(導模)與結構參數(包層孔直徑 dclh、包層孔間距和包層孔填充比f)的關繫,設計齣瞭一組閤適的結構參數(纖芯直徑dco=5.3μm,包層孔材料的摺射率nclh=1.65,dclh=1.0μm,=2.0μm,f=0.7),可以使相應的全固態光子晶體光纖工作在1550 nm的現代光通信波長上,且光子帶隙可以達100 nm。
이용전시량평면파전개법대삼각형배포공포층-원섬심결구적광자정체광섬적광자대극특성진행료수치모의,대비연구료전통광자정체광섬(공기-석영섬심결구)화전고태광자정체광섬(비공기-석영섬심결구)적광자대극(도모)여결구삼수(포층공직경 dclh、포층공간거화포층공전충비f)적관계,설계출료일조합괄적결구삼수(섬심직경dco=5.3μm,포층공재료적절사솔nclh=1.65,dclh=1.0μm,=2.0μm,f=0.7),가이사상응적전고태광자정체광섬공작재1550 nm적현대광통신파장상,차광자대극가이체100 nm。
Numerical simulations were performed on the photonic band gap (PBG) properties of the photonic crystal fibers (PCFs) possessing a clad with the cladding holes triangle-lattice distributed and a round fiber core using the full-vector plane-wave expansion method. Through the comparative analysis on the relationship of the PBG property and the structure parameters (cladding hole diameter dclh, cladding hole pitch and cladding hole filling ration f) between traditional (air-silica) and all-solid-state (nonair-silica) PCFs, a design of an all-solid-state PCF was given out which operates at the communication wavelength of 1 550 nm with the parameters dclh=1.0μm, =2.0μm and f=0.23 at the conditions of fiber core diameter dco=5.3 μm and cladding hole material’s refractive index nclh=1.65. Further numerical simulation shows that this resulting PCF has a gap width up to 43 nm.