舰船科学技术
艦船科學技術
함선과학기술
SHIP SCIENCE AND TECHNOLOGY
2015年
4期
173-176
,共4页
多神经网络分类器%BP神经网络%舰船识别
多神經網絡分類器%BP神經網絡%艦船識彆
다신경망락분류기%BP신경망락%함선식별
multi-neural networks%BP neural network%ship recognition
舰船目标自动识别通常需考虑多个特征,而复杂的特征往往需要适合的分类器与之相适应。本文借助已有的一种可组合多种特征和多种分类器的通用分类器,验证其在舰船识别中的有效性。该通用分类器将多分类问题转化为多个二分类问题,利用多个二分类器对舰船各特征进行独立识别,最后根据投票规则决定目标识别结果。本文以二分类BP网络作为多神经网络分类器的基分类器,对航空母舰、驱逐舰、护卫舰、客船、集装箱、民用货船6种船只类型进行了识别。识别结果表明,由多个二分类BP网组成的多神经网络分类器平均分类精度为89%,该通用分类器在实践中有效。
艦船目標自動識彆通常需攷慮多箇特徵,而複雜的特徵往往需要適閤的分類器與之相適應。本文藉助已有的一種可組閤多種特徵和多種分類器的通用分類器,驗證其在艦船識彆中的有效性。該通用分類器將多分類問題轉化為多箇二分類問題,利用多箇二分類器對艦船各特徵進行獨立識彆,最後根據投票規則決定目標識彆結果。本文以二分類BP網絡作為多神經網絡分類器的基分類器,對航空母艦、驅逐艦、護衛艦、客船、集裝箱、民用貨船6種船隻類型進行瞭識彆。識彆結果錶明,由多箇二分類BP網組成的多神經網絡分類器平均分類精度為89%,該通用分類器在實踐中有效。
함선목표자동식별통상수고필다개특정,이복잡적특정왕왕수요괄합적분류기여지상괄응。본문차조이유적일충가조합다충특정화다충분류기적통용분류기,험증기재함선식별중적유효성。해통용분류기장다분류문제전화위다개이분류문제,이용다개이분류기대함선각특정진행독립식별,최후근거투표규칙결정목표식별결과。본문이이분류BP망락작위다신경망락분류기적기분류기,대항공모함、구축함、호위함、객선、집장상、민용화선6충선지류형진행료식별。식별결과표명,유다개이분류BP망조성적다신경망락분류기평균분류정도위89%,해통용분류기재실천중유효。
Multiple features are usually needed for ship recognition, which means that suitable classifiers are needed to cope with these features. Based on a general classifiers proposed by other researchers, we completed ship recognition and verified the effectiveness of this classifier which can combine multiple features and classifiers. This classifier changes multi-class recognition into different two-class recognition issues, and then gives voting to decide the final result. Using BP network as the base classifier, we make identification for six types of ships: aircraft carriers, destroyers, frigates, passenger ship, container and civil ship. The results show that the multi-classifier reaches classification accuracy as high as 84% for ship target recognition, the classifier proposed before is effective in practice.