中国农业资源与区划
中國農業資源與區劃
중국농업자원여구화
CHINA AGRICULTURAL RESOURCES AND REGIONAL PLANNING
2015年
2期
17-22
,共6页
白龙江流域%湿润指数%Penman-Monteith模型%周期%气象因子
白龍江流域%濕潤指數%Penman-Monteith模型%週期%氣象因子
백룡강류역%습윤지수%Penman-Monteith모형%주기%기상인자
Bailong River basion%humidity index%Penman-Monteith model%cycle%meteorological factors
基于白龙江流域研究区1960~2013年逐日气温、风速、太阳总辐射、相对湿度、日照时数和降水数据,应用了Penman-Monteith模型并结合线性趋势、 Morlet小波分析及Mann-Kendall 检测等方法对研究区地表湿润指数的时空演变特征进行了分析。结果表明:近54年来,白龙江流域地表湿润指数总体在波动中呈增加趋势,其变化倾向率为0.07/10年,气候总体趋于湿润化,其中变湿增幅以20世纪70年代最大,但20世纪90年代和21世纪初,地表湿润指数呈减少趋势;流域内地表湿润指数空间分布格局也存在一定差异,表现为上游、中游、下游地表湿润指数变化倾向率分别为-0.02/10年、0.16/10年和0.08/10年;从多年平均值来看,白龙江流域中下游区域地表湿润指数总体明显高于上游地区。此外,白龙江上游、中游、下游及流域地表湿润指数的主周期分别为16年、20年、15年和7年。突变分析显示,流域地表湿润指数在1983年左右发生突变,多元回归分析表明日照时数和太阳总辐射是影响白龙江流域地表湿润指数变化的主要气象因子。
基于白龍江流域研究區1960~2013年逐日氣溫、風速、太暘總輻射、相對濕度、日照時數和降水數據,應用瞭Penman-Monteith模型併結閤線性趨勢、 Morlet小波分析及Mann-Kendall 檢測等方法對研究區地錶濕潤指數的時空縯變特徵進行瞭分析。結果錶明:近54年來,白龍江流域地錶濕潤指數總體在波動中呈增加趨勢,其變化傾嚮率為0.07/10年,氣候總體趨于濕潤化,其中變濕增幅以20世紀70年代最大,但20世紀90年代和21世紀初,地錶濕潤指數呈減少趨勢;流域內地錶濕潤指數空間分佈格跼也存在一定差異,錶現為上遊、中遊、下遊地錶濕潤指數變化傾嚮率分彆為-0.02/10年、0.16/10年和0.08/10年;從多年平均值來看,白龍江流域中下遊區域地錶濕潤指數總體明顯高于上遊地區。此外,白龍江上遊、中遊、下遊及流域地錶濕潤指數的主週期分彆為16年、20年、15年和7年。突變分析顯示,流域地錶濕潤指數在1983年左右髮生突變,多元迴歸分析錶明日照時數和太暘總輻射是影響白龍江流域地錶濕潤指數變化的主要氣象因子。
기우백룡강류역연구구1960~2013년축일기온、풍속、태양총복사、상대습도、일조시수화강수수거,응용료Penman-Monteith모형병결합선성추세、 Morlet소파분석급Mann-Kendall 검측등방법대연구구지표습윤지수적시공연변특정진행료분석。결과표명:근54년래,백룡강류역지표습윤지수총체재파동중정증가추세,기변화경향솔위0.07/10년,기후총체추우습윤화,기중변습증폭이20세기70년대최대,단20세기90년대화21세기초,지표습윤지수정감소추세;류역내지표습윤지수공간분포격국야존재일정차이,표현위상유、중유、하유지표습윤지수변화경향솔분별위-0.02/10년、0.16/10년화0.08/10년;종다년평균치래간,백룡강류역중하유구역지표습윤지수총체명현고우상유지구。차외,백룡강상유、중유、하유급류역지표습윤지수적주주기분별위16년、20년、15년화7년。돌변분석현시,류역지표습윤지수재1983년좌우발생돌변,다원회귀분석표명일조시수화태양총복사시영향백룡강류역지표습윤지수변화적주요기상인자。
At present, climate warming as one of the main feature of the global climate change has become hot is-sue for scholars worldwide. Drought, as a potential natural phenomenon, is considered to be one of the most serious natural disasters in the world having great influence on economic damage. Therefore, an objective and reasonable drought assessment index becomes even more important. Based on the daily temperature, wind speed, total solar radiation, related humidity, sunshine hours, and precipitation data of Bailong River Basion from 1960 to 2013, hu-midity index was estimated and analyzed using the methods of Penman -Monteith model, linear trend, Mann -Kendall as well as Morlet wavelet under the background of climate change. The results showed that in recent 54 years, the surface humidity index in the Bailong River Basion displayed an increasing trend with fluctuation and the increasing rate was 0. 90/10a, indicating that climate the slightly trended to be wet in the study area. Additionally, the surface humidity index in the 1970s had the greatest increase among all the decades. However, the surface hu-midity index displayed a decreasing trend in the 1990s as well as the 2000s. It was found that the spatial distribu-tion pattern of surface humidity index in the Bailong River Basion presented variously. Namely, the rates of chan-ging trend in the upper, middle and lower reaches were -0. 02/10a, 0. 70/10a and 0. 86/10a, respectively. Ad-ditionally, the decadal average of the surface humidity index in lower reaches was generally higher than that of in middle and upper reaches, while the trend of the surface humidity index was lower than that of middle reaches. From average of the years, the surface humidity index of the middle and lower reaches of Bailong River Basin were significantly higher than that of the upstream region. The major cycle of upper middle, downstream of the Bailong River and Basin were changing respectively with 16a, 20a, 15a, 7a, and the abrupt change of humidity index hap-pened in 1993. Meanwhile, the total solar radiation and sunshine hours were the key factors that influenced the hu-midity index in the study region, and correlation coefficients between solar radiation, sunshine hours and the sur-face humidity index were 0. 83 and 0. 81, respectively. While, the correlation coefficients between average wind speed, precipitation, average temperature, relative humidity and the surface humidity index were 0. 56, -0. 55, 0. 70 , -0. 69 .