桂林理工大学学报
桂林理工大學學報
계림리공대학학보
JOURNAL OF GUILIN UNIVERSITY OF TECHNOLOGY
2015年
1期
111-116
,共6页
梁月吉%任超%刘立龙%庞光锋%杨兴跃
樑月吉%任超%劉立龍%龐光鋒%楊興躍
량월길%임초%류립룡%방광봉%양흥약
大坝变形%经验模态分解%遗传算法%BP神经网络%精度评定
大壩變形%經驗模態分解%遺傳算法%BP神經網絡%精度評定
대패변형%경험모태분해%유전산법%BP신경망락%정도평정
dam deformation%empirical mode decomposition%genetic algorithm%BP neural network%precision evaluation
提出一种基于经验模态分解(EMD)和遗传BP神经网络的大坝变形预测新算法。该算法首先通过EMD对变形序列进行分解,有效分离出非线性高频波动分量和低频趋势分量;然后应用遗传算法优化BP神经网络的权值和阈值,再对各分量进行建模预测;最后叠加各分量预测值得到预测结果。应用新算法与灰色GM (1,1)、回归模型、普通卡尔滤波和遗传BP神经网络算法进行对比分析。结果表明,该算法具有较强的自身内部环境优化和外部平台构建能力,自适应能力和非线性拟合能力较强,在一定程度上保证较优的局部预测值和较好的全局预测精度,在大坝变形预测中具有一定的实用价值。
提齣一種基于經驗模態分解(EMD)和遺傳BP神經網絡的大壩變形預測新算法。該算法首先通過EMD對變形序列進行分解,有效分離齣非線性高頻波動分量和低頻趨勢分量;然後應用遺傳算法優化BP神經網絡的權值和閾值,再對各分量進行建模預測;最後疊加各分量預測值得到預測結果。應用新算法與灰色GM (1,1)、迴歸模型、普通卡爾濾波和遺傳BP神經網絡算法進行對比分析。結果錶明,該算法具有較彊的自身內部環境優化和外部平檯構建能力,自適應能力和非線性擬閤能力較彊,在一定程度上保證較優的跼部預測值和較好的全跼預測精度,在大壩變形預測中具有一定的實用價值。
제출일충기우경험모태분해(EMD)화유전BP신경망락적대패변형예측신산법。해산법수선통과EMD대변형서렬진행분해,유효분리출비선성고빈파동분량화저빈추세분량;연후응용유전산법우화BP신경망락적권치화역치,재대각분량진행건모예측;최후첩가각분량예측치득도예측결과。응용신산법여회색GM (1,1)、회귀모형、보통잡이려파화유전BP신경망락산법진행대비분석。결과표명,해산법구유교강적자신내부배경우화화외부평태구건능력,자괄응능력화비선성의합능력교강,재일정정도상보증교우적국부예측치화교호적전국예측정도,재대패변형예측중구유일정적실용개치。
A new algorithm based on EMD and genetic algorithm-BP neural network is proposed.First,to effec-tively separate the nonlinear trend of volatility of high frequency and low frequency components,the algorithm deformation sequence is decomposed by EMD.Then,genetic algorithm is used to optimize weights and thresh-old values of the BP neural network,to build a prediction model for each component.Finally,the predicted values of each component in the forecast is overlay.The calculation is analyzed and compared with grey GM (1 , 1 ),regression analysis,common Carl filtering and GA-BP neural network.The results show that the method can build external and internal environment optimization platform.With generalization ability and an adaptive fitting,it ensures the optimal local prediction with higher precision forecasting,and can be applied to dam de-formation prediction practically.