北京林业大学学报
北京林業大學學報
북경임업대학학보
JOURNAL OF BEIJING FORESTRY UNIVERSITY
2015年
3期
76-83
,共8页
红松%分段回归%冠形曲线%冠形预估模型
紅鬆%分段迴歸%冠形麯線%冠形預估模型
홍송%분단회귀%관형곡선%관형예고모형
Pinus koraiensis%segmented regression%crown profile%crown-shape predicting model
利用黑龙江省孟家岗林场79株人工红松解析木4538个枝条的实测数据,基于样条函数的分段回归技术,通过推导满足冠形曲线生物学约束(即梢头处树冠半径为0,拐点处树冠半径最大)连续分段函数,构建了人工红松的冠形曲线模型(分段抛物线方程、分段单分子式方程和分段幂函数方程)。采用模型的拟合优度指标、模型的检验指标及对模型拐点参数估计的合理性对备选模型进行评价,选出拟合人工红松冠形曲线的最优模型。采用模型再参数化方法,分别分析模型各参数与林木变量之间的相关性,最终在最优冠形曲线模型中加入胸径作为自变量,建立了人工红松树冠形状预估模型。研究结果表明:分段抛物线函数为描述人工红松冠形曲线的最优模型。人工红松冠形曲线参数及树冠大小与林木胸径( DBH)成正相关,经过再参数化后的树冠形状预估模型的调整决定系数(R2a)为0.6596,估计标准误差(Sy.x)为0.5245,模型的残差均方(MSE)为0.2279,预估精度(p)为97.58%。随着DBH增大,红松冠形曲线拐点(相对冠深)出现的范围为0.72~0.95,平均值为0.81。总体上来看,以胸径为自变量、以稍头约束为条件的树冠形状预估模型能够很好的预测人工红松的树冠形状,为进一步估测红松树冠结构提供了基础。
利用黑龍江省孟傢崗林場79株人工紅鬆解析木4538箇枝條的實測數據,基于樣條函數的分段迴歸技術,通過推導滿足冠形麯線生物學約束(即梢頭處樹冠半徑為0,枴點處樹冠半徑最大)連續分段函數,構建瞭人工紅鬆的冠形麯線模型(分段拋物線方程、分段單分子式方程和分段冪函數方程)。採用模型的擬閤優度指標、模型的檢驗指標及對模型枴點參數估計的閤理性對備選模型進行評價,選齣擬閤人工紅鬆冠形麯線的最優模型。採用模型再參數化方法,分彆分析模型各參數與林木變量之間的相關性,最終在最優冠形麯線模型中加入胸徑作為自變量,建立瞭人工紅鬆樹冠形狀預估模型。研究結果錶明:分段拋物線函數為描述人工紅鬆冠形麯線的最優模型。人工紅鬆冠形麯線參數及樹冠大小與林木胸徑( DBH)成正相關,經過再參數化後的樹冠形狀預估模型的調整決定繫數(R2a)為0.6596,估計標準誤差(Sy.x)為0.5245,模型的殘差均方(MSE)為0.2279,預估精度(p)為97.58%。隨著DBH增大,紅鬆冠形麯線枴點(相對冠深)齣現的範圍為0.72~0.95,平均值為0.81。總體上來看,以胸徑為自變量、以稍頭約束為條件的樹冠形狀預估模型能夠很好的預測人工紅鬆的樹冠形狀,為進一步估測紅鬆樹冠結構提供瞭基礎。
이용흑룡강성맹가강림장79주인공홍송해석목4538개지조적실측수거,기우양조함수적분단회귀기술,통과추도만족관형곡선생물학약속(즉소두처수관반경위0,괴점처수관반경최대)련속분단함수,구건료인공홍송적관형곡선모형(분단포물선방정、분단단분자식방정화분단멱함수방정)。채용모형적의합우도지표、모형적검험지표급대모형괴점삼수고계적합이성대비선모형진행평개,선출의합인공홍송관형곡선적최우모형。채용모형재삼수화방법,분별분석모형각삼수여림목변량지간적상관성,최종재최우관형곡선모형중가입흉경작위자변량,건립료인공홍송수관형상예고모형。연구결과표명:분단포물선함수위묘술인공홍송관형곡선적최우모형。인공홍송관형곡선삼수급수관대소여림목흉경( DBH)성정상관,경과재삼수화후적수관형상예고모형적조정결정계수(R2a)위0.6596,고계표준오차(Sy.x)위0.5245,모형적잔차균방(MSE)위0.2279,예고정도(p)위97.58%。수착DBH증대,홍송관형곡선괴점(상대관심)출현적범위위0.72~0.95,평균치위0.81。총체상래간,이흉경위자변량、이초두약속위조건적수관형상예고모형능구흔호적예측인공홍송적수관형상,위진일보고측홍송수관결구제공료기출。
Using the data of 4 538 branches from 79 Pinus koraiensis in Mengjiagang forest farm of Heilongjiang Province, northeastern China, we deduced continuous segmented function with biological constraints of tree crown profile ( crown width at top of tree is 0 and the maximum value at inflection point) based on the segmented regression of spline function theory, and developed the crown profile models ( i. e. segmented parabola equation,segmented Mitscherlich equation and segmented power equation) for Pinus koraiensis. The goodness-of-fitting index, validation results of the models and the reasonability from estimating the inflection points were used to evaluate all models and select the optimal model for predicting crown profile of Pinus koraiensis. With the re-parameterization of the model parameters and the analysis of the correlation between the parameters and tree variables, diameter at the breast height ( DBH) was introduced into the optimal model, and the crown-shape predicting model for Pinus koraiensis was established. The results showed that the segmented parabola function was the optimal equation to describe crown profile for Pinus koraiensis. The crown size and parameters of the crown profile were positively correlated with DBH. For the crown-shape predicting model after re-parameterization, the coefficient of determination (R2a) was 0.659 6, the standard error (Sy.x) of estimation was 0.524 5 and the mean square error ( MSE) was 0.227 9. Meanwhile, the prediction precision ( p) was 97.58%. With the increase of DBH, the range of inflection point of Pinus koraiensis crown profile ( relative crown depth) is between 0.72 -0.95 with a mean value of 0.81. On the whole, the crow-shape predicting model with DBH as independent variable and the tree top as constraint performed well in predicting the crown profile for Pinus koraiensis, which provides basis for estimating crown structure of Pinus koraiensis in plantations.