西安理工大学学报
西安理工大學學報
서안리공대학학보
JOURNAL OF XI'AN UNIVERSITY OF TECHNOLOGY
2015年
1期
100-105
,共6页
特征提取%主成分分析%核主成分分析%QR分解
特徵提取%主成分分析%覈主成分分析%QR分解
특정제취%주성분분석%핵주성분분석%QR분해
feature extraction%principal component analysis%kernel principal component analy-sis%QR decomposition
K PC A是重要的非线性特征提取的人脸识别方法,但对较大规模训练数据库,会因核矩阵 K过大,计算代价高而不能有效实现,并且使用传统欧式距离度量很难大幅提升识别率。本研究提出了将基于QR分解的PCA推广到KPCA上且应用 p范数度量来解决这一问题的方法,即:首先采用选主元的Cholesky分解得到核矩阵K的低秩近似,然后对小规模矩阵 H进行QR分解,经过一些推导得到中心化核矩阵的特征向量,实现了KPCA的非线性特征提取,在分类识别阶段,本研究突破传统欧氏距离度量的局限,将 p范数作为度量相似性的方法,在O RL和A R人脸数据库中做了大量相关实验,并且分别研究了 p的取值对基于QR分解的主成分分析(QR‐PCA )和核主成分分析(QR‐KPCA)算法的识别率的影响,实验结果表明,这种 p范数意义下的QR‐KPCA处理人脸识别问题有很高的识别率。
K PC A是重要的非線性特徵提取的人臉識彆方法,但對較大規模訓練數據庫,會因覈矩陣 K過大,計算代價高而不能有效實現,併且使用傳統歐式距離度量很難大幅提升識彆率。本研究提齣瞭將基于QR分解的PCA推廣到KPCA上且應用 p範數度量來解決這一問題的方法,即:首先採用選主元的Cholesky分解得到覈矩陣K的低秩近似,然後對小規模矩陣 H進行QR分解,經過一些推導得到中心化覈矩陣的特徵嚮量,實現瞭KPCA的非線性特徵提取,在分類識彆階段,本研究突破傳統歐氏距離度量的跼限,將 p範數作為度量相似性的方法,在O RL和A R人臉數據庫中做瞭大量相關實驗,併且分彆研究瞭 p的取值對基于QR分解的主成分分析(QR‐PCA )和覈主成分分析(QR‐KPCA)算法的識彆率的影響,實驗結果錶明,這種 p範數意義下的QR‐KPCA處理人臉識彆問題有很高的識彆率。
K PC A시중요적비선성특정제취적인검식별방법,단대교대규모훈련수거고,회인핵구진 K과대,계산대개고이불능유효실현,병차사용전통구식거리도량흔난대폭제승식별솔。본연구제출료장기우QR분해적PCA추엄도KPCA상차응용 p범수도량래해결저일문제적방법,즉:수선채용선주원적Cholesky분해득도핵구진K적저질근사,연후대소규모구진 H진행QR분해,경과일사추도득도중심화핵구진적특정향량,실현료KPCA적비선성특정제취,재분류식별계단,본연구돌파전통구씨거리도량적국한,장 p범수작위도량상사성적방법,재O RL화A R인검수거고중주료대량상관실험,병차분별연구료 p적취치대기우QR분해적주성분분석(QR‐PCA )화핵주성분분석(QR‐KPCA)산법적식별솔적영향,실험결과표명,저충 p범수의의하적QR‐KPCA처리인검식별문제유흔고적식별솔。
KPCA is an important human face recognition method for the non‐linear feature extrac‐tion .But it cannot effectively realize the large‐scale training data bank for kernel matrix is too large and calculation cost is too high ,and the use of traditional Euclidean distance metric is diffi‐cult to raise recognition rate by a large margin .This research suggests that PCA base on QR de‐composition be extended to KPCA and that p norm measurement be used to solve this problem . First of all ,the main element Cholesky decomposition is selected to obtain the low rank approxi‐mation of kernel matrix K ,and then ,small‐scale matrix H is to carry out QR decomposition . Through some deductions ,the eigenvectors of centralized kernel matrix can be obtained so as to realize KPCA non‐linear feature extraction . In the classification recognition stage , a break‐through is made in the restriction by the traditional Euclidean distance metric ,and the p norm can be used as the method to measure the similarity in this research .A large number of experiments have been conducted in ORL and AR human face data bank .Also ,a study is made of p value tak‐ing to the principal components analysis(QR‐PCA) based on QR decomposition and effect on QR‐KPCA Algorithm recognition rate .The experiments results indicate that the QR‐KPCA treat‐ment of human face recognition problem is of very high recognition rate under this p norm signifi‐cance .