信阳师范学院学报(自然科学版)
信暘師範學院學報(自然科學版)
신양사범학원학보(자연과학판)
JOURNAL OF XINYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
2期
275-278
,共4页
预测模型%泛函%算法%网络峰值
預測模型%汎函%算法%網絡峰值
예측모형%범함%산법%망락봉치
prediction model%functional%algorithm%network peak
提出一种基于最大共轭梯度连续泛函的网络峰值预测算法和模型,分析网络峰值预测影响因素,建立一个包含网络流量、网络峰值范围和信号强度的SVM模型.采用SVM模型的主成分分析方法实现对网络峰值的PCA估计系统设计.通过最大共轭梯度连续泛函,在奇异半正定性双周期性复分析下,实现对网络峰值的预测,考察网络流量的波动以及网络信号对网络峰值影响贡献程度,对网络峰值特征进行状态信息融合处理,减少预测误差.实验结果表明,该算法对网络峰值的预测精度较高,预测误差控制在1.5%以内,性能优越.
提齣一種基于最大共軛梯度連續汎函的網絡峰值預測算法和模型,分析網絡峰值預測影響因素,建立一箇包含網絡流量、網絡峰值範圍和信號彊度的SVM模型.採用SVM模型的主成分分析方法實現對網絡峰值的PCA估計繫統設計.通過最大共軛梯度連續汎函,在奇異半正定性雙週期性複分析下,實現對網絡峰值的預測,攷察網絡流量的波動以及網絡信號對網絡峰值影響貢獻程度,對網絡峰值特徵進行狀態信息融閤處理,減少預測誤差.實驗結果錶明,該算法對網絡峰值的預測精度較高,預測誤差控製在1.5%以內,性能優越.
제출일충기우최대공액제도련속범함적망락봉치예측산법화모형,분석망락봉치예측영향인소,건립일개포함망락류량、망락봉치범위화신호강도적SVM모형.채용SVM모형적주성분분석방법실현대망락봉치적PCA고계계통설계.통과최대공액제도련속범함,재기이반정정성쌍주기성복분석하,실현대망락봉치적예측,고찰망락류량적파동이급망락신호대망락봉치영향공헌정도,대망락봉치특정진행상태신식융합처리,감소예측오차.실험결과표명,해산법대망락봉치적예측정도교고,예측오차공제재1.5%이내,성능우월.
A conjugate gradient based on continuous network peak prediction algorithm and model of functional a-nalysis were presented.The main factors affecting the network peak forecast were analyzed.The SVM model including network traffic, network peak range and network signal strength was formulated.The principal component analysis method was adopted to realize the network peak PCA to estimate the system design.Through the largest continuous functional conjugate gradient, the peak of the internet was predicted under the singular positive semidefinite double pe-riodic complex analysis.The degree of contribution of the network traffic and network signal peak to the network was in-vestigated, the network characteristic of peak was considered by using state information fusion processing to reduce the prediction error.The experimental results showed that the algorithm of network peak prediction accuracy was higher, the prediction error was controlled within 1.5%, and the performance of the algorithm was superior.