微型电脑应用
微型電腦應用
미형전뇌응용
MICROCOMPUTER APPLICATIONS
2015年
4期
4-7
,共4页
翟芬%蔡烜%李一蒙%冯瑞
翟芬%蔡烜%李一矇%馮瑞
적분%채훤%리일몽%풍서
行人检测%局部行颜色自相似性%多层次导向边缘能量特征%交叉核支持向量机
行人檢測%跼部行顏色自相似性%多層次導嚮邊緣能量特徵%交扠覈支持嚮量機
행인검측%국부행안색자상사성%다층차도향변연능량특정%교차핵지지향량궤
Pedestrian Detection%Local Row Color Self-similarity%Multi-level Oriented Edge Energy Features%HIKSVM
针对计算机视觉领域的行人检测问题,提出一种基于局部行颜色自相似性特征,该特征可表征为在HSV空间,图像水平方向非重叠对称块颜色直方图的距离信息,结合多层次导向边缘能量特征形成图像的融合特征,利用交叉核支持向量机进行分类。与主流用于行人检测的HOG+SVM方法相比,其特征维数低,在保证检测精度的同时,大幅提高了算法效率。实验结果验证了该算法的有效性。
針對計算機視覺領域的行人檢測問題,提齣一種基于跼部行顏色自相似性特徵,該特徵可錶徵為在HSV空間,圖像水平方嚮非重疊對稱塊顏色直方圖的距離信息,結閤多層次導嚮邊緣能量特徵形成圖像的融閤特徵,利用交扠覈支持嚮量機進行分類。與主流用于行人檢測的HOG+SVM方法相比,其特徵維數低,在保證檢測精度的同時,大幅提高瞭算法效率。實驗結果驗證瞭該算法的有效性。
침대계산궤시각영역적행인검측문제,제출일충기우국부행안색자상사성특정,해특정가표정위재HSV공간,도상수평방향비중첩대칭괴안색직방도적거리신식,결합다층차도향변연능량특정형성도상적융합특정,이용교차핵지지향량궤진행분류。여주류용우행인검측적HOG+SVM방법상비,기특정유수저,재보증검측정도적동시,대폭제고료산법효솔。실험결과험증료해산법적유효성。
For pedestrian detection problems in computer vision, this paper proposes a feature based on the local row color self-similarity. In HSV space, this feature represents the color histogram distance of the symmetric non-overlapping blocks in the horizontal direction. It combined Multi-Level Oriented Edge Energy Features with this feature to obtain fusional features, and used Histogram Intersection Kernel Support Vector Machine to classify. Compared to the method of mainstream HOG+SVM, the dimen-sion of this feature is lower. While guaranteeing the detection accuracy, the efficiency of this method is improved mostly. Experiment results validate the effectiveness of the proposed approach.