大地构造与成矿学
大地構造與成礦學
대지구조여성광학
GETECTONICA ET METALLOGENIA
2015年
2期
280-285
,共6页
汪劲草%王方里%汤静如%程雄卫%韦安伟%叶琳
汪勁草%王方裏%湯靜如%程雄衛%韋安偉%葉琳
왕경초%왕방리%탕정여%정웅위%위안위%협림
构造透镜体系统%弱变形域%成矿构造%变形分解%液压致裂
構造透鏡體繫統%弱變形域%成礦構造%變形分解%液壓緻裂
구조투경체계통%약변형역%성광구조%변형분해%액압치렬
tectonic lens system%weak deformational domain%metallogenic structure%deformation partitioning%hydrofracturing
控制热液矿床的成矿构造可分为两大类,一类是由构造动力破坏(构造致裂)为主形成的成矿构造——简称构造型成矿构造,另一类是由流体动力破坏(液压致裂)为主形成的成矿构造——简称流体型成矿构造。在分解变形构造场中,构造型成矿构造一般受控于面型强变形带(P域),而流体型成矿构造一般受控于构造透镜体弱变形域(Q域)。通过对典型控矿构造透镜体系统的解析,认为在韧性域与脆–韧性域,剪切带可以通过变形分解形成由面型强变形带组成的成矿场与由透镜状弱变形域组成的成矿场。当剪切带分别处于韧性、脆–韧性及脆性域时,强变形成矿场在韧性变形条件下不成矿,而在脆–韧性及脆性变形条件下则成矿;弱变形成矿场在韧性域与脆–韧性域时成矿,而在脆性域时则不成矿。上述既有联系又有差别的两类成矿场的对比研究,不仅有助于矿床建模、成矿预测与成矿构造、矿床成因等的深入研究,而且有助于将构造动力、流体动力、成矿构造、成矿流体等要素有机统一,建立构造透镜体型成矿系统;有助于揭示变形分解作用、液压致裂作用、构造泵吸作用三者之间的耦合关系,丰富成矿构造学的研究内容。
控製熱液礦床的成礦構造可分為兩大類,一類是由構造動力破壞(構造緻裂)為主形成的成礦構造——簡稱構造型成礦構造,另一類是由流體動力破壞(液壓緻裂)為主形成的成礦構造——簡稱流體型成礦構造。在分解變形構造場中,構造型成礦構造一般受控于麵型彊變形帶(P域),而流體型成礦構造一般受控于構造透鏡體弱變形域(Q域)。通過對典型控礦構造透鏡體繫統的解析,認為在韌性域與脆–韌性域,剪切帶可以通過變形分解形成由麵型彊變形帶組成的成礦場與由透鏡狀弱變形域組成的成礦場。噹剪切帶分彆處于韌性、脆–韌性及脆性域時,彊變形成礦場在韌性變形條件下不成礦,而在脆–韌性及脆性變形條件下則成礦;弱變形成礦場在韌性域與脆–韌性域時成礦,而在脆性域時則不成礦。上述既有聯繫又有差彆的兩類成礦場的對比研究,不僅有助于礦床建模、成礦預測與成礦構造、礦床成因等的深入研究,而且有助于將構造動力、流體動力、成礦構造、成礦流體等要素有機統一,建立構造透鏡體型成礦繫統;有助于揭示變形分解作用、液壓緻裂作用、構造泵吸作用三者之間的耦閤關繫,豐富成礦構造學的研究內容。
공제열액광상적성광구조가분위량대류,일류시유구조동력파배(구조치렬)위주형성적성광구조——간칭구조형성광구조,령일류시유류체동력파배(액압치렬)위주형성적성광구조——간칭류체형성광구조。재분해변형구조장중,구조형성광구조일반수공우면형강변형대(P역),이류체형성광구조일반수공우구조투경체약변형역(Q역)。통과대전형공광구조투경체계통적해석,인위재인성역여취–인성역,전절대가이통과변형분해형성유면형강변형대조성적성광장여유투경상약변형역조성적성광장。당전절대분별처우인성、취–인성급취성역시,강변형성광장재인성변형조건하불성광,이재취–인성급취성변형조건하칙성광;약변형성광장재인성역여취–인성역시성광,이재취성역시칙불성광。상술기유련계우유차별적량류성광장적대비연구,불부유조우광상건모、성광예측여성광구조、광상성인등적심입연구,이차유조우장구조동력、류체동력、성광구조、성광류체등요소유궤통일,건립구조투경체형성광계통;유조우게시변형분해작용、액압치렬작용、구조빙흡작용삼자지간적우합관계,봉부성광구조학적연구내용。
The metallogenic structures controlling hydrothermal deposits may be divided into two main categories:(1) metallogenic structure formed by dynamic failure (tectonic fracturing), namely tectonic-type metallogenic structure;(2) metallogenic structure induced by hydro-fracturing, namely fluid-type metallogenic structure. In the partitioning deformational tectonic fields, the tectonic-type metallogenic structures are controlled generally by a planar strong-deformational belt (P domain), and the fluid-type metallogenic structures are developed commonly in a lenticular weak-deformational domain (Q domain). Based on the analysis of typical tectonic lenses, we suggest that shear zones can form by deformational partitioning in ductile domain or brittle-ductile domain, whereas the ore-forming fields consist of planar strong-deformational belts and the ore-forming fields consist of lenticular weak-deformational domains. In the tectonic lens metallogenic systems, the strong-deformational ore-forming fields can have mineralization in ductile domains but not in the brittle-ductile and brittle domains;on the contrary, the weak-deformational ore-forming fields can host mineralization in brittle-ductile and brittle domains but not in brittle domains. Comparative study on the two types of ore-forming fields will shed lights on deposit modeling, metallogenic prognosis, metallogenic structure and ore genesis, as well as the ore-forming tectonics including deformational partitioning, hydrofracturing and tectonic pumping.