物理学报
物理學報
물이학보
2015年
8期
080303-1-080303-7
,共1页
二项-负二项组合光场态%二阶相干度%亚泊松分布%泊松分布
二項-負二項組閤光場態%二階相榦度%亞泊鬆分佈%泊鬆分佈
이항-부이항조합광장태%이계상간도%아박송분포%박송분포
binomial-negative-binomial combinational optical field state%second-order coherence%Pois-son distribution%sub-Poissonian distribution
在组合二项-负二项分布的基础上,提出了二项-负二项组合光场态,这种态能在Fo ck态历经量子扩散通道的过程中实现。导出了此光场的二阶相干度公式, g(2)(t)=2? m2+m(m+κt)2,发现随着时间的推移光场从非经典Fock态变为经典态,光子数m经扩散通道后变成了m+κt,κ是扩散常数,相应的光子统计从亚泊松分布历经泊松分布再变成混沌光;初始Fo ck态的光子数越多,则扩散所需的时间越长。
在組閤二項-負二項分佈的基礎上,提齣瞭二項-負二項組閤光場態,這種態能在Fo ck態歷經量子擴散通道的過程中實現。導齣瞭此光場的二階相榦度公式, g(2)(t)=2? m2+m(m+κt)2,髮現隨著時間的推移光場從非經典Fock態變為經典態,光子數m經擴散通道後變成瞭m+κt,κ是擴散常數,相應的光子統計從亞泊鬆分佈歷經泊鬆分佈再變成混沌光;初始Fo ck態的光子數越多,則擴散所需的時間越長。
재조합이항-부이항분포적기출상,제출료이항-부이항조합광장태,저충태능재Fo ck태력경양자확산통도적과정중실현。도출료차광장적이계상간도공식, g(2)(t)=2? m2+m(m+κt)2,발현수착시간적추이광장종비경전Fock태변위경전태,광자수m경확산통도후변성료m+κt,κ시확산상수,상응적광자통계종아박송분포력경박송분포재변성혼돈광;초시Fo ck태적광자수월다,칙확산소수적시간월장。
According to the combinational binomial-negative-binomial distribution, we propose a binomial-negative-binomial combinational optical field state, which can be generated in the process of a Fock state |m??m| passing through a quantum-mechanical diffusion channel. We derive the second-order coherence degree formula, g(2) (t)=2? m2+m(m+κt)2 , which is the diffusion constant. We find that in the process of the Fock state undergoing quantum diffusion and becoming classical, the corresponding photon statistics evolves from sub-Poissonian distribution to Poisson distribution and finally goes to a chaotic state. We also find that the more photons in the initial Fock state, the longer time is needed for quantum decoherence.