物理学报
物理學報
물이학보
2015年
8期
080502-1-080502-10
,共1页
李鹤龄%王娟娟%杨斌%王亚妮%沈宏君
李鶴齡%王娟娟%楊斌%王亞妮%瀋宏君
리학령%왕연연%양빈%왕아니%침굉군
广义不确定性原理%费米气体%热力学性质
廣義不確定性原理%費米氣體%熱力學性質
엄의불학정성원리%비미기체%열역학성질
generalized uncertainty principle%Fermi gas%thermodynamic property
在考虑到广义不确定性原理时,统计物理中的态密度必须做出修正,这导致对传统统计物理的所有结果都有不同程度的修正.在高能、高温条件下,此修正是颠覆传统观念的,在低温条件下,也有一定的修正.研究了低温条件下考虑到广义不确定性原理时,理想费米气体和具有弱相互作用费米气体的热力学性质,分别给出理想费米气体和弱相互作用费米气体的化学势、内能和定容热容的解析表达式,并以铜电子气体为例进行了具体数值计算,将计算结果与不考虑广义不确定性原理时的费米气体的热力学性质进行了比较,探讨了广义不确定性原理对系统热力学性质的影响.考虑到广义不确定性原理后费米气体的化学势、费米能和基态能增大,热容减少,内能随温度的增加先增大,到某一温度(对于铜电子气体, T/TF0~0.3)时,增值为零,温度再增加内能减少.这些修正的具体数值主要由粒子数密度决定,粒子数密度越大,修正越大.
在攷慮到廣義不確定性原理時,統計物理中的態密度必鬚做齣脩正,這導緻對傳統統計物理的所有結果都有不同程度的脩正.在高能、高溫條件下,此脩正是顛覆傳統觀唸的,在低溫條件下,也有一定的脩正.研究瞭低溫條件下攷慮到廣義不確定性原理時,理想費米氣體和具有弱相互作用費米氣體的熱力學性質,分彆給齣理想費米氣體和弱相互作用費米氣體的化學勢、內能和定容熱容的解析錶達式,併以銅電子氣體為例進行瞭具體數值計算,將計算結果與不攷慮廣義不確定性原理時的費米氣體的熱力學性質進行瞭比較,探討瞭廣義不確定性原理對繫統熱力學性質的影響.攷慮到廣義不確定性原理後費米氣體的化學勢、費米能和基態能增大,熱容減少,內能隨溫度的增加先增大,到某一溫度(對于銅電子氣體, T/TF0~0.3)時,增值為零,溫度再增加內能減少.這些脩正的具體數值主要由粒子數密度決定,粒子數密度越大,脩正越大.
재고필도엄의불학정성원리시,통계물리중적태밀도필수주출수정,저도치대전통통계물리적소유결과도유불동정도적수정.재고능、고온조건하,차수정시전복전통관념적,재저온조건하,야유일정적수정.연구료저온조건하고필도엄의불학정성원리시,이상비미기체화구유약상호작용비미기체적열역학성질,분별급출이상비미기체화약상호작용비미기체적화학세、내능화정용열용적해석표체식,병이동전자기체위례진행료구체수치계산,장계산결과여불고필엄의불학정성원리시적비미기체적열역학성질진행료비교,탐토료엄의불학정성원리대계통열역학성질적영향.고필도엄의불학정성원리후비미기체적화학세、비미능화기태능증대,열용감소,내능수온도적증가선증대,도모일온도(대우동전자기체, T/TF0~0.3)시,증치위령,온도재증가내능감소.저사수정적구체수치주요유입자수밀도결정,입자수밀도월대,수정월대.
When taking into account the generalized uncertainty principle in statistical physics, the density of states must make a correction, which causes all the results of traditional statistical physics to have different degrees of correction. In high-energy or high-temperature conditions, this amendment can subvert the traditional concept and there are also some certain amendments at low temperatures. In this paper we study the thermodynamic properties of the ideal and weakly interacting Fermi gas in low temperature conditions when the generalized uncertainty principle is taken into account. Firstly, analytical expressions of chemical potential, internal energy and heat capacity at constant volume of ideal or weakly interacting Fermi gas are given. Then the properties of copper electron gas are computed as an example, showing that when the generalized uncertainty principle is taken into account the chemical potential, Fermi energy and the ground state energy increase with the increase of temperature, while the heat capacity decreases. When the temperature is lower than 0.3 times TF0, the internal energy increases with the increase of temperature, but becomes decreased when temperature is high than 0.3 times TF0. These amendments are mostly dependent on particle density, which becomes bigger and bigger with particle density increasing.