物理学报
物理學報
물이학보
2015年
8期
086101-1-086101-7
,共1页
周航%崔江维%郑齐文%郭旗%任迪远%余学峰
週航%崔江維%鄭齊文%郭旂%任迪遠%餘學峰
주항%최강유%정제문%곽기%임적원%여학봉
可靠性%绝缘体上硅n型金属氧化物半导体场效应晶体管%总剂量效应%电应力
可靠性%絕緣體上硅n型金屬氧化物半導體場效應晶體管%總劑量效應%電應力
가고성%절연체상규n형금속양화물반도체장효응정체관%총제량효응%전응력
reliability%silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor%total ionizing dose effect%electrical stress
随着半导体技术的进步,集成小尺寸绝缘体上硅器件的芯片开始应用到航空航天领域,使得器件在使用中面临了深空辐射环境与自身常规可靠性的双重挑战.进行小尺寸器件电离辐射环境下的可靠性试验有助于对器件综合可靠性进行评估.参照国标GB2689.1-81恒定应力寿命试验与加速寿命试验方法总则进行电应力选取,对部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管进行了电离辐射环境下的常规可靠性研究.通过试验对比,定性地分析了氧化物陷阱电荷和界面态对器件敏感参数的影响,得出了氧化物陷阱电荷和界面态随着时间参数的变化,在不同阶段对器件参数的影响.结果表明,总剂量效应与电应力的共同作用将加剧器件敏感参数的退化,二者的共同作用远大于单一影响因子.
隨著半導體技術的進步,集成小呎吋絕緣體上硅器件的芯片開始應用到航空航天領域,使得器件在使用中麵臨瞭深空輻射環境與自身常規可靠性的雙重挑戰.進行小呎吋器件電離輻射環境下的可靠性試驗有助于對器件綜閤可靠性進行評估.參照國標GB2689.1-81恆定應力壽命試驗與加速壽命試驗方法總則進行電應力選取,對部分耗儘絕緣體上硅n型金屬氧化物半導體場效應晶體管進行瞭電離輻射環境下的常規可靠性研究.通過試驗對比,定性地分析瞭氧化物陷阱電荷和界麵態對器件敏感參數的影響,得齣瞭氧化物陷阱電荷和界麵態隨著時間參數的變化,在不同階段對器件參數的影響.結果錶明,總劑量效應與電應力的共同作用將加劇器件敏感參數的退化,二者的共同作用遠大于單一影響因子.
수착반도체기술적진보,집성소척촌절연체상규기건적심편개시응용도항공항천영역,사득기건재사용중면림료심공복사배경여자신상규가고성적쌍중도전.진행소척촌기건전리복사배경하적가고성시험유조우대기건종합가고성진행평고.삼조국표GB2689.1-81항정응력수명시험여가속수명시험방법총칙진행전응력선취,대부분모진절연체상규n형금속양화물반도체장효응정체관진행료전리복사배경하적상규가고성연구.통과시험대비,정성지분석료양화물함정전하화계면태대기건민감삼수적영향,득출료양화물함정전하화계면태수착시간삼수적변화,재불동계단대기건삼수적영향.결과표명,총제량효응여전응력적공동작용장가극기건민감삼수적퇴화,이자적공동작용원대우단일영향인자.
With the development of semiconductor technology, the small size silicon-on-insulator metal-oxide-semiconductor field-effect transistor devices start to be applied to the aerospace field, which makes the device in use face dual challenges of the deep space radiation environment and conventional reliability. The small size device reliability test under ionizing radiation environment is conducible to the assessing of the comprehensive reliability of the device. With reference to the national standard GB2689.1-81 constant stress life test and accelerated life test method for the general electric stress, the conventional reliability of the sub-micron type partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor is studied under the ionizing radiation environment. The experiment is divided into three groups marked by A, B and C. For all the experimental devices, the gate oxide tox =12.5 nm, channel length L=0.8 μm and width W =8 μm, and nominal operating voltage V =3.5 V. We carry out the electrical stress test on A group after irradiation with γ-ray dose up to 1 × 104 Gy (Si) under the bias condition. Before group B is tested, it has been irradiated by the same dose γ-ray and annealed for one week. Group C is not irradiated by γ-ray before the electric stress test. After irradiation we measure the DC characteristics of the devices: the drain current versus gate voltage (IDS-VGS) and the drain current versus drain voltage (IDS-VDS). The hot carrier injection (HCI) experiment is periodically interrupted to measure the DC characteristics of the device. The sensitive parameters of HCI and irradiation are VT, GM and IDlin, and after HCI stress, all parameters are degenerated. Through the contrast test, we qualitatively analyze the influences of the oxide trap charge and interface state on the sensitive parameters. We obtain the curve of the oxide trap charge and interface state versus time, and the influences of the different stages on device parameters. The results show that the combination of the total dose radiation environment and electrical stress causes the sensitive parameters of the device to rapidly degrade, this combination of these two factors gives rise to bigger effect than a single influence factor.