电源技术
電源技術
전원기술
CHINESE JOURNAL OF POWER SOURCES
2015年
4期
775-777,789
,共4页
中温固体氧化物燃料电池%Ni/Ni-GDC双层阳极%电化学性能
中溫固體氧化物燃料電池%Ni/Ni-GDC雙層暘極%電化學性能
중온고체양화물연료전지%Ni/Ni-GDC쌍층양겁%전화학성능
intermediate temperature solid oxide fuel cells%Ni/Ni-GDC double-layer anode%electrochemical performance
采用硝酸盐-柠檬酸溶胶-凝胶低温自蔓延燃烧法制备GDC粉末,用共压法制备了NiO-GDC单层阳极、NiO/NiO-GDC双层阳极及其单电池,并测试了其性能。研究结果表明:经H2还原后,Ni/Ni-GDC双层阳极外层为多孔结构,由粒径较大的Ni粒子团形成了稳定的电子电导通道及燃料通道;内层孔隙较小、较少,Ni均匀分布于GDC构成的支撑骨架中。Ni/Ni-GDC双层阳极的孔隙率及电导率都高于Ni-GDC单层阳极,从450~700℃,其电导率比Ni-GDC单层阳极都稳定高出15%~20%。单电池的测试结果表明:Ni/Ni-GDC双层阳极支撑单电池在700、650、600℃的最大功率密度分别为0.383、0.329、0.204 W/cm2,比Ni-GDC单层阳极支撑单电池分别高出了8.95%、79.38%、84.76%。Ni/Ni-GDC双层阳极支撑单电池具有比Ni-GDC单层阳极支撑单电池更高的中温、特别是低温电化学性能。
採用硝痠鹽-檸檬痠溶膠-凝膠低溫自蔓延燃燒法製備GDC粉末,用共壓法製備瞭NiO-GDC單層暘極、NiO/NiO-GDC雙層暘極及其單電池,併測試瞭其性能。研究結果錶明:經H2還原後,Ni/Ni-GDC雙層暘極外層為多孔結構,由粒徑較大的Ni粒子糰形成瞭穩定的電子電導通道及燃料通道;內層孔隙較小、較少,Ni均勻分佈于GDC構成的支撐骨架中。Ni/Ni-GDC雙層暘極的孔隙率及電導率都高于Ni-GDC單層暘極,從450~700℃,其電導率比Ni-GDC單層暘極都穩定高齣15%~20%。單電池的測試結果錶明:Ni/Ni-GDC雙層暘極支撐單電池在700、650、600℃的最大功率密度分彆為0.383、0.329、0.204 W/cm2,比Ni-GDC單層暘極支撐單電池分彆高齣瞭8.95%、79.38%、84.76%。Ni/Ni-GDC雙層暘極支撐單電池具有比Ni-GDC單層暘極支撐單電池更高的中溫、特彆是低溫電化學性能。
채용초산염-저몽산용효-응효저온자만연연소법제비GDC분말,용공압법제비료NiO-GDC단층양겁、NiO/NiO-GDC쌍층양겁급기단전지,병측시료기성능。연구결과표명:경H2환원후,Ni/Ni-GDC쌍층양겁외층위다공결구,유립경교대적Ni입자단형성료은정적전자전도통도급연료통도;내층공극교소、교소,Ni균균분포우GDC구성적지탱골가중。Ni/Ni-GDC쌍층양겁적공극솔급전도솔도고우Ni-GDC단층양겁,종450~700℃,기전도솔비Ni-GDC단층양겁도은정고출15%~20%。단전지적측시결과표명:Ni/Ni-GDC쌍층양겁지탱단전지재700、650、600℃적최대공솔밀도분별위0.383、0.329、0.204 W/cm2,비Ni-GDC단층양겁지탱단전지분별고출료8.95%、79.38%、84.76%。Ni/Ni-GDC쌍층양겁지탱단전지구유비Ni-GDC단층양겁지탱단전지경고적중온、특별시저온전화학성능。
GDC electrolyte powder was synthesized by nitrate-citric acid sol-gel auto combustion method in low temperature. NiO-GDC single-layer anode, NiO/NiO-GDC double-layer anode and their single cells were prepared by co-pressing, then their properties were tested. The test results show that after reduction by H2, the outer layer of the Ni/Ni-GDC double-layer anode is porous and stable electronic conductivity channel and fuel channel is formed by the Ni particle groups with large size. In the inner layer, pores are less and smal er, and Ni particles distribute uniformly in the skeleton structure formed by GDC particle. Both the porosity and conductivity of Ni/Ni-GDC double-layer anode are higher than Ni-GDC single-layer anode; its conductivities from 450 to 700℃are al 15%~20%higher than Ni-GDC single-layer anode. The single celltest shows that the peak power densities of Ni/Ni-GDC double-layer anode-supported single cellat temperature 700, 650 and 600℃are respectively 0.383, 0.329 and 0.204 W/cm2, which are respectively 8.95%, 79.38%, 84.76%higher than the Ni-GDC single-layer anode-supported single cell. Ni/Ni-GDC double-layer anode-supported single cells have higher electrochemical performance than Ni-GDC single-layer anode-supported single cellat intermediate temperature, especial y at low temperature.