数据采集与处理
數據採集與處理
수거채집여처리
JOURNAL OF DATA ACQUISITION & PROCESSING
2015年
2期
275-288
,共14页
压缩感知%语音压缩感知%稀疏表示%观测矩阵%自适应重构
壓縮感知%語音壓縮感知%稀疏錶示%觀測矩陣%自適應重構
압축감지%어음압축감지%희소표시%관측구진%자괄응중구
compressed sensing%compressed speech sensing%sparse representation%measurement ma-trix%adaptive reconstruction
压缩感知技术,特别是语音压缩感知技术逐渐成为信号处理领域的研究热点。当前的语音压缩感知关键技术主要包括适合语音信号的稀疏分解矩阵构造,观测矩阵的选择和重构算法的设计。稀疏分解矩阵的重要代表是正交基、基于语音特性的线性预测矩阵和过完备字典。观测矩阵方面主要采用随机观测矩阵分析语音压缩感知性能;重构算法方面重点研究当观测序列或语音信号本身含有噪声时鲁棒的语音压缩感知重构算法。本文对上述语音压缩感知的3大关键技术进行了介绍和对比分析,并对语音压缩感知的应用进行了总结,最后对未来可能的研究热点进行了展望。
壓縮感知技術,特彆是語音壓縮感知技術逐漸成為信號處理領域的研究熱點。噹前的語音壓縮感知關鍵技術主要包括適閤語音信號的稀疏分解矩陣構造,觀測矩陣的選擇和重構算法的設計。稀疏分解矩陣的重要代錶是正交基、基于語音特性的線性預測矩陣和過完備字典。觀測矩陣方麵主要採用隨機觀測矩陣分析語音壓縮感知性能;重構算法方麵重點研究噹觀測序列或語音信號本身含有譟聲時魯棒的語音壓縮感知重構算法。本文對上述語音壓縮感知的3大關鍵技術進行瞭介紹和對比分析,併對語音壓縮感知的應用進行瞭總結,最後對未來可能的研究熱點進行瞭展望。
압축감지기술,특별시어음압축감지기술축점성위신호처리영역적연구열점。당전적어음압축감지관건기술주요포괄괄합어음신호적희소분해구진구조,관측구진적선택화중구산법적설계。희소분해구진적중요대표시정교기、기우어음특성적선성예측구진화과완비자전。관측구진방면주요채용수궤관측구진분석어음압축감지성능;중구산법방면중점연구당관측서렬혹어음신호본신함유조성시로봉적어음압축감지중구산법。본문대상술어음압축감지적3대관건기술진행료개소화대비분석,병대어음압축감지적응용진행료총결,최후대미래가능적연구열점진행료전망。
Compressed sensing technology,especially the compressed speech sensing technology has grad-ually become the research hotspot in signal processing.The currently key issues of compressed speech sensing include the construction of the sparse decomposition matrix,the selection of the measurement matrix and the design of the reconstruction algorithm for speech signal.The important representatives of sparse decomposition matrix are the orthogonal basis,linear prediction matrix based on speech character-istics and overcomplete dictionary.For measurement matrix,the performance of reconstructed speech signals based on random measurement matrix is analyzed.For reconstruction algorithm,the robust re-construction algorithms with noisy measurement or noisy speech signal are researched.In the paper,the above three kinds of compressed speech sensing technologies are introduced and compared,and the main applications of compressed speech sensing are also provided.Finally,the possible future research points of compressed speech sensing are discussed.