水科学进展
水科學進展
수과학진전
2015年
2期
250-256
,共7页
张金凤%常璐%马平亚
張金鳳%常璐%馬平亞
장금봉%상로%마평아
顶盖驱动方腔流%雷诺数%粒子图像测速%流场%顺流次级涡旋
頂蓋驅動方腔流%雷諾數%粒子圖像測速%流場%順流次級渦鏇
정개구동방강류%뢰낙수%입자도상측속%류장%순류차급와선
lid-driven cavity flow%Reynolds number%particle image velocimetry%flow field%downstream secondary eddy
为得到高雷诺数(1×105~1×106)条件下顶盖驱动方腔水流流场和速度分布,设计了边长为0?2 m和0?5 m的立方腔,并利用粒子图像测速技术( Particle Image Velocimetry, PIV)对方腔流流场进行测量,分析方腔流流场特性和边壁对流场影响规律。结果表明:雷诺数达到5×105时方腔流中主涡旋发生变形,雷诺数从5×105增大到1×106过程中,中间的初级涡旋( Primary eddy, PE)继续变形,并分裂成两个涡旋;随着雷诺数的增大,顺流次级涡旋(Downstream Secondary Eddy Region, DSE)区域面积缩小,雷诺数为5×105时DSE区域可看到成型的涡旋,当雷诺数为1×106时, DSE区域继续缩小,在同样条件下看不到成型的涡旋;雷诺数增大的过程中各边壁的边界层变薄,边壁对方腔流流场特性影响明显。
為得到高雷諾數(1×105~1×106)條件下頂蓋驅動方腔水流流場和速度分佈,設計瞭邊長為0?2 m和0?5 m的立方腔,併利用粒子圖像測速技術( Particle Image Velocimetry, PIV)對方腔流流場進行測量,分析方腔流流場特性和邊壁對流場影響規律。結果錶明:雷諾數達到5×105時方腔流中主渦鏇髮生變形,雷諾數從5×105增大到1×106過程中,中間的初級渦鏇( Primary eddy, PE)繼續變形,併分裂成兩箇渦鏇;隨著雷諾數的增大,順流次級渦鏇(Downstream Secondary Eddy Region, DSE)區域麵積縮小,雷諾數為5×105時DSE區域可看到成型的渦鏇,噹雷諾數為1×106時, DSE區域繼續縮小,在同樣條件下看不到成型的渦鏇;雷諾數增大的過程中各邊壁的邊界層變薄,邊壁對方腔流流場特性影響明顯。
위득도고뢰낙수(1×105~1×106)조건하정개구동방강수류류장화속도분포,설계료변장위0?2 m화0?5 m적립방강,병이용입자도상측속기술( Particle Image Velocimetry, PIV)대방강류류장진행측량,분석방강류류장특성화변벽대류장영향규률。결과표명:뢰낙수체도5×105시방강류중주와선발생변형,뢰낙수종5×105증대도1×106과정중,중간적초급와선( Primary eddy, PE)계속변형,병분렬성량개와선;수착뢰낙수적증대,순류차급와선(Downstream Secondary Eddy Region, DSE)구역면적축소,뢰낙수위5×105시DSE구역가간도성형적와선,당뢰낙수위1×106시, DSE구역계속축소,재동양조건하간불도성형적와선;뢰낙수증대적과정중각변벽적변계층변박,변벽대방강류류장특성영향명현。
Laboratory experiments have been conducted to study high Reynolds number ( from 1 × 105 to 1 × 106 ) , three?dimensional lid?driven cavity flows in two cavity dimensions:0?2m×0?2m×0?2m and 0?5m×0?5m×0?5m. Par?ticle Image Velocimetry ( PIV) technical was applied to investigate the flow field and the effects of wall on the flow fields. Measured time?averaged streamlines show that the primary eddy starts to distort at Re=5 × 105 and starts to breakup into two/three eddies at Re=1×106. The region of Downstream Secondary Eddy (DSE) decreases as the Reynolds number increases. At Re=5×105, a fully developed DSE can be seen clearly. But it is hard to see when Re=1×106. The thickness of boundary layer becomes thinner and thinner as the Reynolds number increases. The measure?ments also show that the side boundary has a significant impact of the primary eddy.