数据采集与处理
數據採集與處理
수거채집여처리
JOURNAL OF DATA ACQUISITION & PROCESSING
2015年
2期
299-306
,共8页
声学矢量传感器%语者声源%到达角估计(DOA)%空间稀疏表示%协方差矩阵
聲學矢量傳感器%語者聲源%到達角估計(DOA)%空間稀疏錶示%協方差矩陣
성학시량전감기%어자성원%도체각고계(DOA)%공간희소표시%협방차구진
acoustic vector sensor%speaker source%direction of arrival estimation(DOA)%spatial sparse representation%covariance matrix
基于声学矢量传感器(Acoustic vector sensor,AVS)和空间声源稀疏表示理论,进行了鲁棒的高精度语者声源到达角(Direction of arrival,DOA)估计方法研究。考虑混响和加性噪声影响,本文推导了 AVS 接收信号的向量化的协方差矩阵模型,设计了过完备字典,依此建立声源的空间稀疏表示模型,最终通过求解稀疏空间谱获得鲁棒的 DOA 估计。本文进行了大量的不同混响和加性噪声条件下的仿真实验和实际环境中的 DOA 估计实验,实验结果表明,本文提出的语者声源 DOA 估计方法在信噪比5~30 dB 范围内可获得均方根误差(Root mean square error,RMSE)小于1°的估计精度。在实际环境中也取得了2~10°误差的 DOA 估计结果。
基于聲學矢量傳感器(Acoustic vector sensor,AVS)和空間聲源稀疏錶示理論,進行瞭魯棒的高精度語者聲源到達角(Direction of arrival,DOA)估計方法研究。攷慮混響和加性譟聲影響,本文推導瞭 AVS 接收信號的嚮量化的協方差矩陣模型,設計瞭過完備字典,依此建立聲源的空間稀疏錶示模型,最終通過求解稀疏空間譜穫得魯棒的 DOA 估計。本文進行瞭大量的不同混響和加性譟聲條件下的倣真實驗和實際環境中的 DOA 估計實驗,實驗結果錶明,本文提齣的語者聲源 DOA 估計方法在信譟比5~30 dB 範圍內可穫得均方根誤差(Root mean square error,RMSE)小于1°的估計精度。在實際環境中也取得瞭2~10°誤差的 DOA 估計結果。
기우성학시량전감기(Acoustic vector sensor,AVS)화공간성원희소표시이론,진행료로봉적고정도어자성원도체각(Direction of arrival,DOA)고계방법연구。고필혼향화가성조성영향,본문추도료 AVS 접수신호적향양화적협방차구진모형,설계료과완비자전,의차건립성원적공간희소표시모형,최종통과구해희소공간보획득로봉적 DOA 고계。본문진행료대량적불동혼향화가성조성조건하적방진실험화실제배경중적 DOA 고계실험,실험결과표명,본문제출적어자성원 DOA 고계방법재신조비5~30 dB 범위내가획득균방근오차(Root mean square error,RMSE)소우1°적고계정도。재실제배경중야취득료2~10°오차적 DOA 고계결과。
A robust high resolution speaker source direction of arrival (DOA)estimation method is pro-posed based on one acoustic vector sensor (AVS)and spatial sparse representation.Under the reverbera-tion and additive noise conditions,the array covariance vector model of the received signals by AVS is first derived.Then the sparse representation model of the covariance vector is developed.Finally the ro-bust DOA estimation is obtained by recovering the sparse vector.A large number of simulation experi-ments are carried out under different reverberation and additive noise conditions,and also DOA estima-tion experiments in the actual environment.The results show that the proposed speaker DOA estimation is able to achieve root mean square error(RMSE)of below 1°when SNR is from 5 dB to 30 dB and 2—10° error in the real scenario.