计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2015年
4期
305-308
,共4页
最小二乘支持向量机%反向学习%粒子群优化算法%网络入侵%多层分类器
最小二乘支持嚮量機%反嚮學習%粒子群優化算法%網絡入侵%多層分類器
최소이승지지향량궤%반향학습%입자군우화산법%망락입침%다층분류기
Least square support vector machine (LSSVM)%Reverse learning%Particle swarm optimisation%Network intrusion%Multi-layer classifier
为了提高网络入侵检测率,提出一种反向学习粒子群算法和多层次分类器相融合的网络入侵检测模型。首先将反向学习粒子群算法优化最小二乘支持向量机,以提高分类性能;然后利用由粗到精策略构造多层的网络入侵分类器降低计算时间杂度复;最后采用KDD 99数据集进行仿真测试。仿真结果表明,相对于其他检测模型,该模型不仅提高了网络入侵检测率,降低了入侵检测误报率,同时加快了入侵检测速度,为网络安全提供了有效保证。
為瞭提高網絡入侵檢測率,提齣一種反嚮學習粒子群算法和多層次分類器相融閤的網絡入侵檢測模型。首先將反嚮學習粒子群算法優化最小二乘支持嚮量機,以提高分類性能;然後利用由粗到精策略構造多層的網絡入侵分類器降低計算時間雜度複;最後採用KDD 99數據集進行倣真測試。倣真結果錶明,相對于其他檢測模型,該模型不僅提高瞭網絡入侵檢測率,降低瞭入侵檢測誤報率,同時加快瞭入侵檢測速度,為網絡安全提供瞭有效保證。
위료제고망락입침검측솔,제출일충반향학습입자군산법화다층차분류기상융합적망락입침검측모형。수선장반향학습입자군산법우화최소이승지지향량궤,이제고분류성능;연후이용유조도정책략구조다층적망락입침분류기강저계산시간잡도복;최후채용KDD 99수거집진행방진측시。방진결과표명,상대우기타검측모형,해모형불부제고료망락입침검측솔,강저료입침검측오보솔,동시가쾌료입침검측속도,위망락안전제공료유효보증。
In order to improve detection rate of the network intrusion,we propose a network intrusion detection model with the fusion of reverse learning particle swarm optimisation (RLPSO)and multilayer classifier.First,the RLPSO is employed to optimise LSSVM to improve the classification performance;then the coarse-to-fine strategy is used to construct multi-layer network intrusion classifier to reduce the complexity of computation time;finally,the simulation test is carried out using KDD 99 data.Simulation results show that compared with other detection models,the proposed model improves network intrusion detection rate and lowers the false positive rate of intrusion,meanwhile it also accelerates the intrusion detection speed,and provides effective guarantee for network security.