环境科学
環境科學
배경과학
CHINESE JOURNAL OF ENVIRONMENTAL SCIENCE
2015年
3期
1092-1097
,共6页
叶飞%刘荣%管昊%贡湘君%季凌晨
葉飛%劉榮%管昊%貢湘君%季凌晨
협비%류영%관호%공상군%계릉신
单斜相%纳米氧化锆%MnOx-CeO2/m-ZrO2 催化剂%低温NH3-SCR%脱硝机制
單斜相%納米氧化鋯%MnOx-CeO2/m-ZrO2 催化劑%低溫NH3-SCR%脫硝機製
단사상%납미양화고%MnOx-CeO2/m-ZrO2 최화제%저온NH3-SCR%탈초궤제
monoclinic phase%nanocrystalline zirconium%MnOx-CeO2/m-ZrO2 catalysts%low-temperature NH3-SCR%denitration mechanism
以纳米m-ZrO2为载体,用浸渍法制备出MnOx-CeO2/m-ZrO2催化剂,考察反应温度、活性组分负载量对催化剂NH3-SCR脱硝活性影响,探讨催化剂表面织构特征,分析催化剂脱硝活性机制.结果表明,在低温脱硝温度范围,提高反应温度、增加活性组分负载量,有利于催化剂脱硝效率的增加.110℃时,2.5%MnOx-CeO2/m-ZrO2脱硝效率为55.5%,15%MnOx-CeO2/m-ZrO2脱硝效率达93.5%. XRD、BET、XPS、H2-TPR表征结果表明,催化剂表面具有良好的氧化还原能力,表面织构对脱硝反应有利. NH3-TPD测试显示,MnOx-CeO2/m-ZrO2催化剂的脱硝反应机制为:NH3吸附在催化剂表面的Lewis酸性位和Br?nsted酸性位上,通过反应生成相应中间产物NH2 NO或NH4 NO2,中间产物进一步分解最终转变为N2和H2 O;催化剂总脱硝反应效率中,在Lewis酸性位上的脱硝反应占比较大.
以納米m-ZrO2為載體,用浸漬法製備齣MnOx-CeO2/m-ZrO2催化劑,攷察反應溫度、活性組分負載量對催化劑NH3-SCR脫硝活性影響,探討催化劑錶麵織構特徵,分析催化劑脫硝活性機製.結果錶明,在低溫脫硝溫度範圍,提高反應溫度、增加活性組分負載量,有利于催化劑脫硝效率的增加.110℃時,2.5%MnOx-CeO2/m-ZrO2脫硝效率為55.5%,15%MnOx-CeO2/m-ZrO2脫硝效率達93.5%. XRD、BET、XPS、H2-TPR錶徵結果錶明,催化劑錶麵具有良好的氧化還原能力,錶麵織構對脫硝反應有利. NH3-TPD測試顯示,MnOx-CeO2/m-ZrO2催化劑的脫硝反應機製為:NH3吸附在催化劑錶麵的Lewis痠性位和Br?nsted痠性位上,通過反應生成相應中間產物NH2 NO或NH4 NO2,中間產物進一步分解最終轉變為N2和H2 O;催化劑總脫硝反應效率中,在Lewis痠性位上的脫硝反應佔比較大.
이납미m-ZrO2위재체,용침지법제비출MnOx-CeO2/m-ZrO2최화제,고찰반응온도、활성조분부재량대최화제NH3-SCR탈초활성영향,탐토최화제표면직구특정,분석최화제탈초활성궤제.결과표명,재저온탈초온도범위,제고반응온도、증가활성조분부재량,유리우최화제탈초효솔적증가.110℃시,2.5%MnOx-CeO2/m-ZrO2탈초효솔위55.5%,15%MnOx-CeO2/m-ZrO2탈초효솔체93.5%. XRD、BET、XPS、H2-TPR표정결과표명,최화제표면구유량호적양화환원능력,표면직구대탈초반응유리. NH3-TPD측시현시,MnOx-CeO2/m-ZrO2최화제적탈초반응궤제위:NH3흡부재최화제표면적Lewis산성위화Br?nsted산성위상,통과반응생성상응중간산물NH2 NO혹NH4 NO2,중간산물진일보분해최종전변위N2화H2 O;최화제총탈초반응효솔중,재Lewis산성위상적탈초반응점비교대.
The MnOx-CeO2/m-ZrO2 catalyst was prepared by impregnation with nano monoclinic-phase zirconium ( m-ZrO2 ) as the supporter. The influence of active component and reaction temperature on the denitration performance of the catalyst was investigated, while the surface properties of the catalyst and the denitration mechanism were discussed. The denitration efficiency was improved as the active component increased and the reaction temperature rose. The denitration efficiency of 2. 5% MnOx-CeO2/m-ZrO2 catalyst at 110℃ was 55. 5% while that of 15% MnOx-CeO2/m-ZrO2 catalyst was 93. 5%. The results of XRD, SEM, BET and H2-TPR showed that the surface structure of the loaded catalyst was beneficial for denitration and oxidation-reduction. NH3-TPD test demonstrated that NH3 was adsorbed at the Lewis acid sites and Br?nsted acid sites on the surface of catalysts. Intermediate products NH2 NO and NH4 NO were generated from a series of reactions between NO and NH3 and finally transformed into N2 and H2 O. Most of the denitration process happened at Lewis acid sites.