环境科学
環境科學
배경과학
CHINESE JOURNAL OF ENVIRONMENTAL SCIENCE
2015年
3期
759-767
,共9页
吴健生%廖星%彭建%黄秀兰
吳健生%廖星%彭建%黃秀蘭
오건생%료성%팽건%황수란
PM2. 5%土地利用回归模型%回归映射%空间分布%相关性%GIS
PM2. 5%土地利用迴歸模型%迴歸映射%空間分佈%相關性%GIS
PM2. 5%토지이용회귀모형%회귀영사%공간분포%상관성%GIS
PM2. 5%land use regression model%regression mapping%spatial distribution%correlation%GIS
基于Arcgis平台,利用土地利用回归模型模拟重庆市PM2.5浓度分布,获取了高分辨率结果图.从重庆市环保局网上获取了17个空气质量监测站点的PM2.5数据,利用16个监测点数据,结合土地利用数据、路网数据、DEM数据和人口数据建立土地利用回归模型,利用剩余的1个监测点数据来对回归映射结果进行检验.按照模型设置的变量生成方法,对监测点建立多种尺度的缓冲区,提取变量数据,最终生成了56个变量.按照土地利用回归模型的设置,56个自变量最终有3个变量进入PM2.5的回归方程,模型的R2逐步增大,且最终R2为0.84,模型拟合程度非常好.回归方程中,与研究区PM2.5浓度空间分布相关性最大的因素是空气质量监测站点500 m范围内的农用地面积,然后依次是DEM和1000 m范围内一级公路总长度,它们与PM2.5的皮尔森相关系数依次是:0.695、-0.599和0.394.回归映射检验结果显示,检验点的误差率为2.7%,误差可以接受.回归映射结果显示,PM2.5浓度以高值分布于主城区,沿一级公路分布趋势明显,与高层紧密相关,模拟结果与实际情况相符.
基于Arcgis平檯,利用土地利用迴歸模型模擬重慶市PM2.5濃度分佈,穫取瞭高分辨率結果圖.從重慶市環保跼網上穫取瞭17箇空氣質量鑑測站點的PM2.5數據,利用16箇鑑測點數據,結閤土地利用數據、路網數據、DEM數據和人口數據建立土地利用迴歸模型,利用剩餘的1箇鑑測點數據來對迴歸映射結果進行檢驗.按照模型設置的變量生成方法,對鑑測點建立多種呎度的緩遲區,提取變量數據,最終生成瞭56箇變量.按照土地利用迴歸模型的設置,56箇自變量最終有3箇變量進入PM2.5的迴歸方程,模型的R2逐步增大,且最終R2為0.84,模型擬閤程度非常好.迴歸方程中,與研究區PM2.5濃度空間分佈相關性最大的因素是空氣質量鑑測站點500 m範圍內的農用地麵積,然後依次是DEM和1000 m範圍內一級公路總長度,它們與PM2.5的皮爾森相關繫數依次是:0.695、-0.599和0.394.迴歸映射檢驗結果顯示,檢驗點的誤差率為2.7%,誤差可以接受.迴歸映射結果顯示,PM2.5濃度以高值分佈于主城區,沿一級公路分佈趨勢明顯,與高層緊密相關,模擬結果與實際情況相符.
기우Arcgis평태,이용토지이용회귀모형모의중경시PM2.5농도분포,획취료고분변솔결과도.종중경시배보국망상획취료17개공기질량감측참점적PM2.5수거,이용16개감측점수거,결합토지이용수거、로망수거、DEM수거화인구수거건립토지이용회귀모형,이용잉여적1개감측점수거래대회귀영사결과진행검험.안조모형설치적변량생성방법,대감측점건립다충척도적완충구,제취변량수거,최종생성료56개변량.안조토지이용회귀모형적설치,56개자변량최종유3개변량진입PM2.5적회귀방정,모형적R2축보증대,차최종R2위0.84,모형의합정도비상호.회귀방정중,여연구구PM2.5농도공간분포상관성최대적인소시공기질량감측참점500 m범위내적농용지면적,연후의차시DEM화1000 m범위내일급공로총장도,타문여PM2.5적피이삼상관계수의차시:0.695、-0.599화0.394.회귀영사검험결과현시,검험점적오차솔위2.7%,오차가이접수.회귀영사결과현시,PM2.5농도이고치분포우주성구,연일급공로분포추세명현,여고층긴밀상관,모의결과여실제정황상부.
Land use regression model ( LUR model) was used to simulate the spatial distribution of PM2. 5 concentrations in Chongqing with the software of ArcGIS. This research was conducted with a total of 17 PM2. 5 concentrations of monitoring points from 17 air quality monitoring stations recorded in the official website of Chongqing Environmental Protection Bureau. Among them, 16 were chosen as the dependent variables, and the last one was chosen for land use regression model validation test. At each site location, we constructed circular buffers with ArcGIS and captured information on roads, population, land use and DEM. Based on the buffer information, 56 potential geographic predictors were built. Finally 3 variables:cropland area within 500 m of the air quality monitoring sites, the site locations’ DEM and primary road length within 1 000 m of the 56 predictors were left for predicting 84% of the variation of PM2. 5 concentrations and the Pearson coefficients between the 3 variables and PM2. 5 concentrations were 0. 695, -0. 599 and 0. 394, respectively. The validation test result showed that the spatial distribution map of PM2. 5 predicted extremely well with an error rate of only 0. 027. And the return map results showed: ① PM2. 5 concentrations were high in the center of the main city; ② PM2. 5 concentrations were high along the road and ③ the distribution was closely correlated to the DEM of sampling locations.