太赫兹科学与电子信息学报
太赫玆科學與電子信息學報
태혁자과학여전자신식학보
Information and Electronic Engineering
2015年
2期
272-278
,共7页
杨智宇%吴志红%赵启军%张艺衡
楊智宇%吳誌紅%趙啟軍%張藝衡
양지우%오지홍%조계군%장예형
人脸检测%差分特征%Gentle Adaboost算法%分类与回归树%融合
人臉檢測%差分特徵%Gentle Adaboost算法%分類與迴歸樹%融閤
인검검측%차분특정%Gentle Adaboost산법%분류여회귀수%융합
face detection%differential features%Gentle Adaboost%Classification And Regression Trees%fusion
针对真实环境下的多视角人脸检测问题,提出了一种基于差分特征的多视角人脸检测算法。它综合运用2种不同的差分特征:一阶 NPD特征与二阶 Laplace特征,结合 Gentle Adaboost算法与分类回归树(CART),分别训练基于一阶和二阶差分特征的人脸检测器,再将这2种差分特征的检测结果进行融合,得到最终的人脸检测结果。本文的差分人脸检测器充分利用了2种差分特征的互补性,结合了一阶特征对光照的鲁棒性和二阶特征对旋转的鲁棒性,从而更好地实现了复杂环境下的多视角人脸检测。在 CMU-MIT和 FDDB两大公开人脸检测数据集中对提出的方法进行验证,结果证明了本文提出的差分人脸检测器的有效性,能够较好地检测复杂环境下的多视角人脸。
針對真實環境下的多視角人臉檢測問題,提齣瞭一種基于差分特徵的多視角人臉檢測算法。它綜閤運用2種不同的差分特徵:一階 NPD特徵與二階 Laplace特徵,結閤 Gentle Adaboost算法與分類迴歸樹(CART),分彆訓練基于一階和二階差分特徵的人臉檢測器,再將這2種差分特徵的檢測結果進行融閤,得到最終的人臉檢測結果。本文的差分人臉檢測器充分利用瞭2種差分特徵的互補性,結閤瞭一階特徵對光照的魯棒性和二階特徵對鏇轉的魯棒性,從而更好地實現瞭複雜環境下的多視角人臉檢測。在 CMU-MIT和 FDDB兩大公開人臉檢測數據集中對提齣的方法進行驗證,結果證明瞭本文提齣的差分人臉檢測器的有效性,能夠較好地檢測複雜環境下的多視角人臉。
침대진실배경하적다시각인검검측문제,제출료일충기우차분특정적다시각인검검측산법。타종합운용2충불동적차분특정:일계 NPD특정여이계 Laplace특정,결합 Gentle Adaboost산법여분류회귀수(CART),분별훈련기우일계화이계차분특정적인검검측기,재장저2충차분특정적검측결과진행융합,득도최종적인검검측결과。본문적차분인검검측기충분이용료2충차분특정적호보성,결합료일계특정대광조적로봉성화이계특정대선전적로봉성,종이경호지실현료복잡배경하적다시각인검검측。재 CMU-MIT화 FDDB량대공개인검검측수거집중대제출적방법진행험증,결과증명료본문제출적차분인검검측기적유효성,능구교호지검측복잡배경하적다시각인검。
Pose and illumination variations are two major challenges in face detection. Therefore,a novel face detection method based on differential features is proposed. This method extracts first order and second order differential features from images, which are respectively used to train two face detectors using the Gentle Adaboost algorithm with the Classification And Regression Trees(CART) as weak classifiers. Given a new image, the two face detectors are first separately applied to detect candidate faces in the image, and then their detected face regions are combined to give the final face detection results. Thanks to the illumination invariance of first order derivative features and to the rotation invariance of second order derivative features, the proposed differential features based face detection method can better handle the detection of multi-view faces in complex background. The proposed method has been evaluated on the CMU-MIT and FDDB datasets and the results demonstrate its effectiveness.