机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
8期
172-177
,共6页
彭志召%张进秋%岳杰%张磊%黄大山
彭誌召%張進鞦%嶽傑%張磊%黃大山
팽지소%장진추%악걸%장뢰%황대산
磁流变液%阻尼器%半主动控制%结构设计
磁流變液%阻尼器%半主動控製%結構設計
자류변액%조니기%반주동공제%결구설계
magnetorheological fluid%damper%semi-active control%structure design
磁流变阻尼器(Magnetorheological damper,MRD)是实现车辆悬架半主动控制的理想器件,然而传统MRD的控制模型及控制过程复杂,严重制约 MRD 的工程应用。针对上述问题,提出具有并联常通孔的 MRD,当电流为零时,磁流变液从常通孔和感应通道流过,实现最小阻尼系数;电流加载至最大时,感应通道被发生流变效应的磁流变液堵塞而充当限压阀的作用,在磁流变液屈服前,液体仅从常通孔流过,实现最大阻尼系数。建立新型阻尼器的阻尼力计算模型,为其设计和阻尼特性分析提供理论依据,并通过磁路仿真和阻尼特性试验验证设计方案的可行性。该MRD尤其适用于与开关类控制策略相结合,不需要复杂的逆模型求解,极大地简化了控制过程,具有较好的实际应用价值。
磁流變阻尼器(Magnetorheological damper,MRD)是實現車輛懸架半主動控製的理想器件,然而傳統MRD的控製模型及控製過程複雜,嚴重製約 MRD 的工程應用。針對上述問題,提齣具有併聯常通孔的 MRD,噹電流為零時,磁流變液從常通孔和感應通道流過,實現最小阻尼繫數;電流加載至最大時,感應通道被髮生流變效應的磁流變液堵塞而充噹限壓閥的作用,在磁流變液屈服前,液體僅從常通孔流過,實現最大阻尼繫數。建立新型阻尼器的阻尼力計算模型,為其設計和阻尼特性分析提供理論依據,併通過磁路倣真和阻尼特性試驗驗證設計方案的可行性。該MRD尤其適用于與開關類控製策略相結閤,不需要複雜的逆模型求解,極大地簡化瞭控製過程,具有較好的實際應用價值。
자류변조니기(Magnetorheological damper,MRD)시실현차량현가반주동공제적이상기건,연이전통MRD적공제모형급공제과정복잡,엄중제약 MRD 적공정응용。침대상술문제,제출구유병련상통공적 MRD,당전류위령시,자류변액종상통공화감응통도류과,실현최소조니계수;전류가재지최대시,감응통도피발생류변효응적자류변액도새이충당한압벌적작용,재자류변액굴복전,액체부종상통공류과,실현최대조니계수。건립신형조니기적조니력계산모형,위기설계화조니특성분석제공이론의거,병통과자로방진화조니특성시험험증설계방안적가행성。해MRD우기괄용우여개관류공제책략상결합,불수요복잡적역모형구해,겁대지간화료공제과정,구유교호적실제응용개치。
Magnetorheological damper (MRD) is a first-rate device for semiactive control of vehicle suspension. However, the traditional MRD with complex inverse model and regulating process is difficult to be applied to the practice. In order to overcome these disadvantages, a new type of MRD paralleling with constant throttling orifices is proposed. If the current of winding is set to zero, the magnetorheological fluid (MRF) flow through both inactive inducing gap and constant throttling orifices, so the damping is minimum; if the current is set to the maximum value, the inducing gap is plugged by the activated MRF and works as a pressure limiter, so the fluid only flow though the constant throttling orifices until the MRF in the inducing gap is yielded, which means the damping is maximum. The mathematical model of the proposed damper is deduced to provide theoretic foundation for structure design and damping force analysis. The feasibility of this novel MRD is verified by magnetic circuit simulation and damping experiment. Especially, the proposed MRD is appropriate to combined with on/off control strategies because the complicate inverse model and control process may be avoided. In a word, the MRD paralleling with constant throttling orifices owns significant advantages for practical application.