中国农业科学
中國農業科學
중국농업과학
SCIENTIA AGRICULTURA SINICA
2015年
7期
1311-1320
,共10页
海河低平原%渠灌区%深松%麦田%节水增产效应
海河低平原%渠灌區%深鬆%麥田%節水增產效應
해하저평원%거관구%심송%맥전%절수증산효응
Haihe lowland plain%canal irrigation district%sub-soiling%wheat field%water-saving and yield-increasing effects
【目的】研究海河低平原渠灌区土壤深松对冬小麦的节水增产效应,以提高冬小麦产量和水分利用效率。【方法】于2011—2012年和2012—2013年冬小麦生长季,以冬小麦品种良星99为材料,大田条件下,通过小麦季设置旋耕(RT)、深松(SRT)和深耕(MRT)3种耕作方式处理,在海河低平原渠灌区进行了2个周期的研究。【结果】(1)深松可提高土壤水分入渗速率。水分入渗速率稳定时,深松处理土壤水分入渗速率为0.05 mm·s-1,分别是旋耕处理和深耕处理的2.50倍和1.67倍。(2)渠灌条件下,深松有利于水分在土壤中快速下渗,优化水分在深层土壤中的分布,提升深层土壤对灌水的储蓄能力。灌水后48 h,在0—180 cm 土层,深松处理土壤水分增量为158.5 mm,旋耕和深耕处理分别为142.5和144.1 mm,分别相当于深松处理的89.9%和90.9%。(3)在冬小麦冬前阶段,深耕处理棵间蒸发量最高,分别是深松和旋耕处理的1.15倍和1.35倍。冬小麦返青后,旋耕处理棵间蒸发量提高,尤其是春季灌水后,旋耕处理日棵间蒸发量上升更快,最高达1.32 mm·d-1,而深松处理和深耕处理则仅为0.78和0.85 mm·d-1。深松处理全生育期棵间蒸发量最低,仅为138.17 mm,分别相当于深耕处理和旋耕处理的86.9%和89.7%。(4)冬小麦播种至拔节期,旋耕处理0—100 cm 土层含水量高于深松和深耕处理;拔节期至成熟,0—20 cm 土层,旋耕处理含水量最高;20—80 cm 土层,深松处理含水量最高;80 cm 以下土层,3个处理差异不显著。(5)深松处理生育期耗水量为419.1 mm,比旋耕和深耕处理节水约6%;深松处理对灌水和降水的消耗比例分别为41.2%和22.0%,显著高于深耕和旋耕处理。(6)深松处理产量平均为8550 kg·hm-2,分别比旋耕和深耕处理提高15.4%和6.9%,其水分利用效率比旋耕和深耕处理分别高22.9%和14.0%。【结论】土壤深松可增加麦田地表水入渗速率,减少灌水和降水的无效蒸发,提高土壤对灌水和降水的储蓄,降低冬小麦耗水量,提高其水分利用效率和灌水生产效率,最终显著提高冬小麦产量,具有较好的节水增产效应。建议在海河低平原渠灌区冬小麦种植中采用深松耕作措施。
【目的】研究海河低平原渠灌區土壤深鬆對鼕小麥的節水增產效應,以提高鼕小麥產量和水分利用效率。【方法】于2011—2012年和2012—2013年鼕小麥生長季,以鼕小麥品種良星99為材料,大田條件下,通過小麥季設置鏇耕(RT)、深鬆(SRT)和深耕(MRT)3種耕作方式處理,在海河低平原渠灌區進行瞭2箇週期的研究。【結果】(1)深鬆可提高土壤水分入滲速率。水分入滲速率穩定時,深鬆處理土壤水分入滲速率為0.05 mm·s-1,分彆是鏇耕處理和深耕處理的2.50倍和1.67倍。(2)渠灌條件下,深鬆有利于水分在土壤中快速下滲,優化水分在深層土壤中的分佈,提升深層土壤對灌水的儲蓄能力。灌水後48 h,在0—180 cm 土層,深鬆處理土壤水分增量為158.5 mm,鏇耕和深耕處理分彆為142.5和144.1 mm,分彆相噹于深鬆處理的89.9%和90.9%。(3)在鼕小麥鼕前階段,深耕處理棵間蒸髮量最高,分彆是深鬆和鏇耕處理的1.15倍和1.35倍。鼕小麥返青後,鏇耕處理棵間蒸髮量提高,尤其是春季灌水後,鏇耕處理日棵間蒸髮量上升更快,最高達1.32 mm·d-1,而深鬆處理和深耕處理則僅為0.78和0.85 mm·d-1。深鬆處理全生育期棵間蒸髮量最低,僅為138.17 mm,分彆相噹于深耕處理和鏇耕處理的86.9%和89.7%。(4)鼕小麥播種至拔節期,鏇耕處理0—100 cm 土層含水量高于深鬆和深耕處理;拔節期至成熟,0—20 cm 土層,鏇耕處理含水量最高;20—80 cm 土層,深鬆處理含水量最高;80 cm 以下土層,3箇處理差異不顯著。(5)深鬆處理生育期耗水量為419.1 mm,比鏇耕和深耕處理節水約6%;深鬆處理對灌水和降水的消耗比例分彆為41.2%和22.0%,顯著高于深耕和鏇耕處理。(6)深鬆處理產量平均為8550 kg·hm-2,分彆比鏇耕和深耕處理提高15.4%和6.9%,其水分利用效率比鏇耕和深耕處理分彆高22.9%和14.0%。【結論】土壤深鬆可增加麥田地錶水入滲速率,減少灌水和降水的無效蒸髮,提高土壤對灌水和降水的儲蓄,降低鼕小麥耗水量,提高其水分利用效率和灌水生產效率,最終顯著提高鼕小麥產量,具有較好的節水增產效應。建議在海河低平原渠灌區鼕小麥種植中採用深鬆耕作措施。
【목적】연구해하저평원거관구토양심송대동소맥적절수증산효응,이제고동소맥산량화수분이용효솔。【방법】우2011—2012년화2012—2013년동소맥생장계,이동소맥품충량성99위재료,대전조건하,통과소맥계설치선경(RT)、심송(SRT)화심경(MRT)3충경작방식처리,재해하저평원거관구진행료2개주기적연구。【결과】(1)심송가제고토양수분입삼속솔。수분입삼속솔은정시,심송처리토양수분입삼속솔위0.05 mm·s-1,분별시선경처리화심경처리적2.50배화1.67배。(2)거관조건하,심송유리우수분재토양중쾌속하삼,우화수분재심층토양중적분포,제승심층토양대관수적저축능력。관수후48 h,재0—180 cm 토층,심송처리토양수분증량위158.5 mm,선경화심경처리분별위142.5화144.1 mm,분별상당우심송처리적89.9%화90.9%。(3)재동소맥동전계단,심경처리과간증발량최고,분별시심송화선경처리적1.15배화1.35배。동소맥반청후,선경처리과간증발량제고,우기시춘계관수후,선경처리일과간증발량상승경쾌,최고체1.32 mm·d-1,이심송처리화심경처리칙부위0.78화0.85 mm·d-1。심송처리전생육기과간증발량최저,부위138.17 mm,분별상당우심경처리화선경처리적86.9%화89.7%。(4)동소맥파충지발절기,선경처리0—100 cm 토층함수량고우심송화심경처리;발절기지성숙,0—20 cm 토층,선경처리함수량최고;20—80 cm 토층,심송처리함수량최고;80 cm 이하토층,3개처리차이불현저。(5)심송처리생육기모수량위419.1 mm,비선경화심경처리절수약6%;심송처리대관수화강수적소모비례분별위41.2%화22.0%,현저고우심경화선경처리。(6)심송처리산량평균위8550 kg·hm-2,분별비선경화심경처리제고15.4%화6.9%,기수분이용효솔비선경화심경처리분별고22.9%화14.0%。【결론】토양심송가증가맥전지표수입삼속솔,감소관수화강수적무효증발,제고토양대관수화강수적저축,강저동소맥모수량,제고기수분이용효솔화관수생산효솔,최종현저제고동소맥산량,구유교호적절수증산효응。건의재해하저평원거관구동소맥충식중채용심송경작조시。
[Objective]The objective of this experiment is to explore the water-saving and yield-increasing effect of sub-soiling tillage in wheat field in canal irrigation regions, and aim to increase the yield potential and the water storage capacity.[Method]Using Liangxing 99, a winter wheat cultivar currently cultivated in Haihe low land plain as material, three tillage treatments including rotary tillage (RT), sub-soiling tillage (SRT), and moldboard plow tillage (MRT) were set up in a field experiment in canal irrigation region of Haihe lowland plain during 2011-2012 and 2012-2013. [Result] Sub-soiling tillage improved the soil water infiltration rate, in which the soil water infiltration rate of SRT treatment was 0.05 mm·s-1 that was 2.50 and 1.67 folds of those in RT treatment and MRT treatment, respectively. Sub-soiling tillage was conducive to infiltration of the irrigated water in the soil, in favour of the water distribution in deep soil, and improvement of the storage capacity of surface water effectively. After 48 h of irrigation, the soil water storage content in SRT treatment was 158.5 mm in 0-180 cm soil layer, where it was 142.5 mm and 144.1 mm in the RT and MRT treatments, respectively. They were equivalent to that of 89.9% and 90.9% of the SRT treatment. Before wintering stage, the evaporation rate was the highest in MRT treatment, which was 1.15 and 1.35 times higher than the treatments of SRT and RT, respectively. After regreening stage, the evaporation rate in RT treatment was increased, and gradually increased to the date of spring irrigation with a value of 1.32 mm·d-1. However, the evaporation rate in treatments of SRT and MRT were low, with values of 0.78 mm·d-1and 0.85 mm·d-1, respectively. The evaporation amount was the lowest in the SRT treatment (138.17 mm), which was equivalent to 86.9% and 89.7% of RT and NRT, respectively. The water storage content in 0-100 cm soil layer in RT treatment was more than those in SRT and MRT treatments from sowing date to jointing stage. Further analyses indicated that RT treatment had the highest water storage content in 0-20 cm soil layer, whereas SRT treatment had the highest water storage content in 20-80 cm soil layer. There were no significant differences in water storage content under the soil layer below the 80 cm layer among the three treatments. The total water consumption in SRT treatment was 419.1 mm across the whole growth stage, which saved water by about 6% in comparison with the treatments of RT and MRT. Of which, the consumption ratio of irrigation to precipitation in SRT treatment was 41.2% and 22.0%, respectively, which was significantly higher than those in MRT and RT treatments. The average yield in SRT treatment was 8 550 kg·hm-2 across the two growing seasons. It had increases of 15.4% and 6.9% compared with those in treatments of RT and MRT, respectively. Moreover, the water use efficiency in SRT treatment increased by 22.9% and 14.0%compared with those in treatments of RT and MRT, respectively. [Conclusion] Sub-soiling tillage improved soil water infiltration rate, decreased the evaporation amount of irrigation and precipitation, and reduced the water consumption in winter wheat field. This tillage method could increase the water use efficiency and irrigation productivity efficiency and yield. Accordingly, sub-soiling tillage practice is recommended in winter wheat production in canal irrigation regions in Haihe lowland plain.