中国农业科学
中國農業科學
중국농업과학
SCIENTIA AGRICULTURA SINICA
2015年
7期
1361-1369
,共9页
李明%李忠佩%刘明%江春玉%吴萌
李明%李忠珮%劉明%江春玉%吳萌
리명%리충패%류명%강춘옥%오맹
秸秆生物炭%土壤养分%微生物生物量碳%磷脂脂肪酸%典范对应分析
秸稈生物炭%土壤養分%微生物生物量碳%燐脂脂肪痠%典範對應分析
갈간생물탄%토양양분%미생물생물량탄%린지지방산%전범대응분석
straw biochar%soil nutrient%microbial biomass carbon%phospholipid fatty acids%canonical correspondence analysis
【目的】研究不同秸秆转化生物炭对红壤性水稻土养分含量及微生物群落结构的影响差异,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以水稻和玉米秸秆300℃、400℃和500℃裂解得到的生物炭为添加材料,以发育于第四纪的红壤性水稻土为供试土壤,通过135 d 室内培育试验,研究秸秆生物炭添加对红壤性水稻土 pH、有机碳和养分含量、土壤微生物生物量碳(MBC)的影响,及其对磷脂脂肪酸(PLFA)表征的微生物群落结构的影响。试验共设7个处理:对照(CK)、添加水稻秸秆炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸秆炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【结果】物料类型和制备温度因素显著影响裂解得到生物炭材料的养分含量和化学性质。培育试验表明,两种秸秆生物炭的添加,平均提高土壤 pH 值0.16个单位;土壤有机碳、速效磷和速效钾水平,分别比对照增加26.1%、20.6%和281.8%。水稻秸秆炭对土壤速效钾水平促进作用较大,而玉米秸秆炭则主要增加速效磷含量。低温裂解秸秆炭(300℃)的添加,并没有显著影响土壤碱解氮和无机氮含量;而添加 RB500和 CB500处理的碱解氮分别比对照低10.4%和8.1%,硝态氮含量分别比对照高63.6%和100.7%(P<0.05)。添加生物炭处理,微生物生物量碳和磷脂脂肪酸总量平均比对照增加63.4%和47.5%,但添加300℃秸秆炭处理与对照差异不显著;两种秸秆炭的输入均可以增加革兰氏阴性细菌(G-)、革兰氏阳性细菌(G+)、放线菌和真菌的含量,且不同制备温度处理间的差异表现为300℃<400℃<500℃。主成分分析表明,水稻秸秆炭对土壤微生物群落结构的影响较玉米秸秆炭更为显著;不同温度水稻秸秆炭间,群落结构差异明显,而不同温度玉米秸秆炭间没有区分开来。典范对应分析结果表明,生物炭添加可以通过改变土壤性质,间接影响微生物群落结构;其中,土壤速效磷、有机碳和速效钾含量与土壤微生物群落分布显著相关。【结论】水稻和玉米秸秆炭均可以改良红壤性水稻土的酸度,提高土壤养分含量和微生物量水平;两种秸秆炭的添加均改变了土壤微生物群落结构,其中以水稻秸秆炭的影响更为明显。
【目的】研究不同秸稈轉化生物炭對紅壤性水稻土養分含量及微生物群落結構的影響差異,為土壤改良和秸稈資源的閤理利用提供理論參攷。【方法】以水稻和玉米秸稈300℃、400℃和500℃裂解得到的生物炭為添加材料,以髮育于第四紀的紅壤性水稻土為供試土壤,通過135 d 室內培育試驗,研究秸稈生物炭添加對紅壤性水稻土 pH、有機碳和養分含量、土壤微生物生物量碳(MBC)的影響,及其對燐脂脂肪痠(PLFA)錶徵的微生物群落結構的影響。試驗共設7箇處理:對照(CK)、添加水稻秸稈炭300℃(RB300)、400℃(RB400)、500℃(RB500)和添加玉米秸稈炭300℃(CB300)、400℃(CB400)、500℃(CB500)。【結果】物料類型和製備溫度因素顯著影響裂解得到生物炭材料的養分含量和化學性質。培育試驗錶明,兩種秸稈生物炭的添加,平均提高土壤 pH 值0.16箇單位;土壤有機碳、速效燐和速效鉀水平,分彆比對照增加26.1%、20.6%和281.8%。水稻秸稈炭對土壤速效鉀水平促進作用較大,而玉米秸稈炭則主要增加速效燐含量。低溫裂解秸稈炭(300℃)的添加,併沒有顯著影響土壤堿解氮和無機氮含量;而添加 RB500和 CB500處理的堿解氮分彆比對照低10.4%和8.1%,硝態氮含量分彆比對照高63.6%和100.7%(P<0.05)。添加生物炭處理,微生物生物量碳和燐脂脂肪痠總量平均比對照增加63.4%和47.5%,但添加300℃秸稈炭處理與對照差異不顯著;兩種秸稈炭的輸入均可以增加革蘭氏陰性細菌(G-)、革蘭氏暘性細菌(G+)、放線菌和真菌的含量,且不同製備溫度處理間的差異錶現為300℃<400℃<500℃。主成分分析錶明,水稻秸稈炭對土壤微生物群落結構的影響較玉米秸稈炭更為顯著;不同溫度水稻秸稈炭間,群落結構差異明顯,而不同溫度玉米秸稈炭間沒有區分開來。典範對應分析結果錶明,生物炭添加可以通過改變土壤性質,間接影響微生物群落結構;其中,土壤速效燐、有機碳和速效鉀含量與土壤微生物群落分佈顯著相關。【結論】水稻和玉米秸稈炭均可以改良紅壤性水稻土的痠度,提高土壤養分含量和微生物量水平;兩種秸稈炭的添加均改變瞭土壤微生物群落結構,其中以水稻秸稈炭的影響更為明顯。
【목적】연구불동갈간전화생물탄대홍양성수도토양분함량급미생물군락결구적영향차이,위토양개량화갈간자원적합리이용제공이론삼고。【방법】이수도화옥미갈간300℃、400℃화500℃렬해득도적생물탄위첨가재료,이발육우제사기적홍양성수도토위공시토양,통과135 d 실내배육시험,연구갈간생물탄첨가대홍양성수도토 pH、유궤탄화양분함량、토양미생물생물량탄(MBC)적영향,급기대린지지방산(PLFA)표정적미생물군락결구적영향。시험공설7개처리:대조(CK)、첨가수도갈간탄300℃(RB300)、400℃(RB400)、500℃(RB500)화첨가옥미갈간탄300℃(CB300)、400℃(CB400)、500℃(CB500)。【결과】물료류형화제비온도인소현저영향렬해득도생물탄재료적양분함량화화학성질。배육시험표명,량충갈간생물탄적첨가,평균제고토양 pH 치0.16개단위;토양유궤탄、속효린화속효갑수평,분별비대조증가26.1%、20.6%화281.8%。수도갈간탄대토양속효갑수평촉진작용교대,이옥미갈간탄칙주요증가속효린함량。저온렬해갈간탄(300℃)적첨가,병몰유현저영향토양감해담화무궤담함량;이첨가 RB500화 CB500처리적감해담분별비대조저10.4%화8.1%,초태담함량분별비대조고63.6%화100.7%(P<0.05)。첨가생물탄처리,미생물생물량탄화린지지방산총량평균비대조증가63.4%화47.5%,단첨가300℃갈간탄처리여대조차이불현저;량충갈간탄적수입균가이증가혁란씨음성세균(G-)、혁란씨양성세균(G+)、방선균화진균적함량,차불동제비온도처리간적차이표현위300℃<400℃<500℃。주성분분석표명,수도갈간탄대토양미생물군락결구적영향교옥미갈간탄경위현저;불동온도수도갈간탄간,군락결구차이명현,이불동온도옥미갈간탄간몰유구분개래。전범대응분석결과표명,생물탄첨가가이통과개변토양성질,간접영향미생물군락결구;기중,토양속효린、유궤탄화속효갑함량여토양미생물군락분포현저상관。【결론】수도화옥미갈간탄균가이개량홍양성수도토적산도,제고토양양분함량화미생물량수평;량충갈간탄적첨가균개변료토양미생물군락결구,기중이수도갈간탄적영향경위명현。
[Objective]The various effects of different straw biochar on nutrient content and microbial community structure were studied in order to provide information for soil amelioration and proper management of straw residue.[Method]Through a 135-day laboratory incubation experiment and used a red paddy soil that originated from the Quaternary, the influences of rice and corn straw biochar that pyrolyzed at 300℃, 400℃ and 500℃ on soil pH, organic carbon, nutrient content, microbial biomass carbon and profile of microbial PLFAs community structure were investigated. The experiment consisted of seven treatments: control soil (CK), soil amended with 300℃ (RB300), 400℃ (RB400) and 500℃ (RB500) rice straw biochar, soil incorporated with 300℃(CB300), 400℃ (CB400) and 500℃ (CB500) corn straw biochar. [Result] Feedstock type and pyrolysis temperature had a significant influence on the nutrient contents and chemical properties of biochar products. Compared with control, the two straw biochar amendments increased pH value by 0.16 unit and enhanced the contents of soil organic carbon, available P and available K by 26.1%, 20.6% and 281.8%, respectively. Under the same pyrolysis temperature, the application of rice straw biochar mainly promoted the level of available K while corn straw biochar improved the content of available P. Application of 300℃ straw biochar had no significant effect on soil available and mineral N contents. Compared with the control, soils amended with RB500 and CB500 were, respectively, 10.4% and 8.1% less in available N, while significantly increased by 63.6% and 100.7% in NO3--N concentration. Although the concentrations of microbial biomass carbon and total phospholipid fatty acids for soils amended with straw biochar were 63.4% and 47.5% higher than control soil, there was no significant difference between the control soil and soils with 300℃straw biochar. Both the two types of biochar enhanced the contents of G-, G+, fungi and actinobacteria and shown as 300℃<400℃<500℃. Results of PCA indicated that rice straw biochar amendment had more effect on the structure of soil microbial community than corn straw biochar. The microbial community compositions of three rice straw biochar were separated from each other while no distinctive recognized among the three corn biochar. Results of CCA suggested that straw biochars can affect the composition of microbial community through altering soil chemical and nutrient properties, as soil available P, soil organic carbon and available had significant correlation with the distribution of soil microbial community. [Conclusion] Both the two straw biochars could ameliorate the acidity and nutrient content of red paddy soil, and enhance the level of soil microbial biomass. Soil microbial community structure had been affected in the presence of straw biochars and rice straw biochar had more effective influence than corn straw biochars.