中国农业科学
中國農業科學
중국농업과학
SCIENTIA AGRICULTURA SINICA
2015年
9期
1756-1763
,共8页
陈增龙%陈秀%董丰收%刘新刚%徐军%郑永权
陳增龍%陳秀%董豐收%劉新剛%徐軍%鄭永權
진증룡%진수%동봉수%류신강%서군%정영권
呋虫胺%对映体选择性%光化学降解%转化
呋蟲胺%對映體選擇性%光化學降解%轉化
부충알%대영체선택성%광화학강해%전화
dinotefuran%enantioselectivity%photodegradation%transformation
【目的】在人工氙灯光照、室内自然光照和避光培养条件下,探究呋虫胺外消旋体(Rac-呋虫胺)及其对映体(S-呋虫胺和 R-呋虫胺)在甲醇、乙醇、异丙醇、乙酸乙酯、乙腈、二氯甲烷、超纯水以及β-环糊精水溶液中的手性稳定性,为大宗用量的手性新烟碱类杀虫剂呋虫胺的准确检测分析、药效和环境安全的正确评价提供依据。【方法】培养周期内分段取样,以直链淀粉-三(3,5-二甲基苯基氨基甲酸酯)为手性固定相,正己烷/甲醇/乙醇(85/10/5, v/v/v)为流动相,柱温为30℃,流速为1.0 mL·min-1,紫外检测波长为270 nm,进样量为20μL,高效液相色谱/二极管阵列检测器(HPLC/DAD)进行分离分析,S-呋虫胺和R-呋虫胺的保留时间分别为8.3和9.7 min。外标法定量。【结果】人工氙灯光照、室内自然光照和避光培养条件下,S-呋虫胺和R-呋虫胺在甲醇、乙醇、异丙醇、乙酸乙酯、乙腈、二氯甲烷、超纯水以及β-环糊精水溶液中均不存在相互转化现象;配对样品t-test 分析Rac-呋虫胺在每种溶剂中两个对映体的降解残留量,证实无对映体选择性降解。对映体浓度比值(EF 值)为0.4746—0.5116。但在人工氙灯光照下,Rac-呋虫胺、S-呋虫胺和R-呋虫胺迅速降解,顺序为二氯甲烷>乙腈>乙酸乙酯≈异丙醇≈乙醇>甲醇>超纯水>β-环糊精水溶液。相比水溶液,呋虫胺在有机溶剂中更容易降解,半衰期分别为3.3—3.6 h和1.2—2.3 h。光解动态符合一级动力学模型,相关系数为0.9550—0.9959。室内自然光照与避光培养条件下,Rac-呋虫胺、S-呋虫胺和R-呋虫胺在二氯甲烷、乙腈、乙酸乙酯、异丙醇、乙醇、甲醇、超纯水和β-环糊精水溶液中无明显降解,实测浓度和相对标准偏差分别为9.5—10.4 mg·L-1,1.0%—3.2%和9.5—10.5 mg·L-1,1.4%—2.8%。【结论】在(25±2)℃人工氙灯光照、室内自然光照和避光条件下,呋虫胺在甲醇、乙醇、异丙醇、乙酸乙酯、乙腈、二氯甲烷、超纯水以及β-环糊精水溶液中手性构型稳定,在此条件下进行定性定量分析、药效和环境安全评价是准确的。
【目的】在人工氙燈光照、室內自然光照和避光培養條件下,探究呋蟲胺外消鏇體(Rac-呋蟲胺)及其對映體(S-呋蟲胺和 R-呋蟲胺)在甲醇、乙醇、異丙醇、乙痠乙酯、乙腈、二氯甲烷、超純水以及β-環糊精水溶液中的手性穩定性,為大宗用量的手性新煙堿類殺蟲劑呋蟲胺的準確檢測分析、藥效和環境安全的正確評價提供依據。【方法】培養週期內分段取樣,以直鏈澱粉-三(3,5-二甲基苯基氨基甲痠酯)為手性固定相,正己烷/甲醇/乙醇(85/10/5, v/v/v)為流動相,柱溫為30℃,流速為1.0 mL·min-1,紫外檢測波長為270 nm,進樣量為20μL,高效液相色譜/二極管陣列檢測器(HPLC/DAD)進行分離分析,S-呋蟲胺和R-呋蟲胺的保留時間分彆為8.3和9.7 min。外標法定量。【結果】人工氙燈光照、室內自然光照和避光培養條件下,S-呋蟲胺和R-呋蟲胺在甲醇、乙醇、異丙醇、乙痠乙酯、乙腈、二氯甲烷、超純水以及β-環糊精水溶液中均不存在相互轉化現象;配對樣品t-test 分析Rac-呋蟲胺在每種溶劑中兩箇對映體的降解殘留量,證實無對映體選擇性降解。對映體濃度比值(EF 值)為0.4746—0.5116。但在人工氙燈光照下,Rac-呋蟲胺、S-呋蟲胺和R-呋蟲胺迅速降解,順序為二氯甲烷>乙腈>乙痠乙酯≈異丙醇≈乙醇>甲醇>超純水>β-環糊精水溶液。相比水溶液,呋蟲胺在有機溶劑中更容易降解,半衰期分彆為3.3—3.6 h和1.2—2.3 h。光解動態符閤一級動力學模型,相關繫數為0.9550—0.9959。室內自然光照與避光培養條件下,Rac-呋蟲胺、S-呋蟲胺和R-呋蟲胺在二氯甲烷、乙腈、乙痠乙酯、異丙醇、乙醇、甲醇、超純水和β-環糊精水溶液中無明顯降解,實測濃度和相對標準偏差分彆為9.5—10.4 mg·L-1,1.0%—3.2%和9.5—10.5 mg·L-1,1.4%—2.8%。【結論】在(25±2)℃人工氙燈光照、室內自然光照和避光條件下,呋蟲胺在甲醇、乙醇、異丙醇、乙痠乙酯、乙腈、二氯甲烷、超純水以及β-環糊精水溶液中手性構型穩定,在此條件下進行定性定量分析、藥效和環境安全評價是準確的。
【목적】재인공선등광조、실내자연광조화피광배양조건하,탐구부충알외소선체(Rac-부충알)급기대영체(S-부충알화 R-부충알)재갑순、을순、이병순、을산을지、을정、이록갑완、초순수이급β-배호정수용액중적수성은정성,위대종용량적수성신연감류살충제부충알적준학검측분석、약효화배경안전적정학평개제공의거。【방법】배양주기내분단취양,이직련정분-삼(3,5-이갑기분기안기갑산지)위수성고정상,정기완/갑순/을순(85/10/5, v/v/v)위류동상,주온위30℃,류속위1.0 mL·min-1,자외검측파장위270 nm,진양량위20μL,고효액상색보/이겁관진렬검측기(HPLC/DAD)진행분리분석,S-부충알화R-부충알적보류시간분별위8.3화9.7 min。외표법정량。【결과】인공선등광조、실내자연광조화피광배양조건하,S-부충알화R-부충알재갑순、을순、이병순、을산을지、을정、이록갑완、초순수이급β-배호정수용액중균불존재상호전화현상;배대양품t-test 분석Rac-부충알재매충용제중량개대영체적강해잔류량,증실무대영체선택성강해。대영체농도비치(EF 치)위0.4746—0.5116。단재인공선등광조하,Rac-부충알、S-부충알화R-부충알신속강해,순서위이록갑완>을정>을산을지≈이병순≈을순>갑순>초순수>β-배호정수용액。상비수용액,부충알재유궤용제중경용역강해,반쇠기분별위3.3—3.6 h화1.2—2.3 h。광해동태부합일급동역학모형,상관계수위0.9550—0.9959。실내자연광조여피광배양조건하,Rac-부충알、S-부충알화R-부충알재이록갑완、을정、을산을지、이병순、을순、갑순、초순수화β-배호정수용액중무명현강해,실측농도화상대표준편차분별위9.5—10.4 mg·L-1,1.0%—3.2%화9.5—10.5 mg·L-1,1.4%—2.8%。【결론】재(25±2)℃인공선등광조、실내자연광조화피광조건하,부충알재갑순、을순、이병순、을산을지、을정、이록갑완、초순수이급β-배호정수용액중수성구형은정,재차조건하진행정성정량분석、약효화배경안전평개시준학적。
Objective]The objective of this study is to investigate the chiral stability of dinotefuran racemate (Rac-dinotefuran) and enantiomers (S-dinotefuran andR-dinotefuran) in methanol, ethanol, isopropanol, ethyl acetate, acetonitrile, dichloromethane, ultrapure water andβ-cyclodextrin solution under xenon lamp, natural light, and dark, determine chiral neonicotinoid dinotefuran used extensively in China, and to accurately evaluate its efficacy and environmental safety.[Method]The samples were collected periodically during the whole experimental process. Dinotefuran enantiomers were analyzed by high performance liquid chromatography/diode array detector (HPLC/DAD) with amylose tris-3, 5-dimethylphenylcarbamate as chiral stationary phase and n-hexane/methanol/ethanol (85/10/5,v/v/v) as mobile phase. The ultraviolet detection wavelength of the DAD was identified at 270 nm. The column temperature was set at 30℃ and the injection volume was 20 μL. The retention times ofS-dinotefuran and R-dinotefuran were 8.3 and 9.7 min. The quantification of dinotefuran enantiomers was made by using external standard method.[Result]No transformation was observed betweenS-dinotefuran andR-dinotefuran in methanol, ethanol, isopropanol, ethyl acetate, acetonitrile, dichloromethane, ultrapure water andβ-cyclodextrin solution under xenon lamp, natural light and dark conditions. Dinotefuran did not undergo enantioselective degradation by the student’s pairedt-test for theRac-dinotefuran in all the solvents. The enantiomer fractions (EF) were 0.4746-0.5116. However,Rac-dinotefuran,S-dinotefuran andR-dinotefuran were degraded rapidly in the solvents under xenon lamp. The order of the degradation rate was dichloromethane>acetonitrile>ethyl acetate≈isopropanol≈ethanol>methanol>ultrapure water>β-cyclodextrin solution. The degradation of dinotefuran enantiomers in the organic solvents was faster than in the aqueous solutions and the estimated half-lives were 3.3-3.6 h and 1.2-2.3 h, respectively. The photodegradation followed first-order kinetics mode and the correlation coefficients were ranged from 0.9550 to 0.9959.Rac-dinotefuran, S-dinotefuran andR-dinotefuran showed no obvious degradation in dichloromethane, acetonitrile, ethyl acetate, isopropanol, ethanol, methanol, ultrapure water, andβ-cyclodextrin solution under natural light and dark during the whole experimental process. The measured concentration and the corresponding relative standard deviation were 9.5-10.4 mg·L-1 and 1.0%-3.2% under natural light, whereas they were 9.5-10.5 mg·L-1 and 1.4%-2.8% under dark.[Conclusion]Dinotefuran enantiomers were chiral configuration stability in methanol, ethanol, isopropanol, ethyl acetate, acetonitrile, dichloromethane, ultrapure water, andβ-cyclodextrin solution under xenon lamp, natural light and dark condition conditions at (25±2)℃. The qualitative and quantitative analysis, efficacy and environmental safety assessment were accurate under these conditions.