中国农业科学
中國農業科學
중국농업과학
SCIENTIA AGRICULTURA SINICA
2015年
7期
1405-1414
,共10页
彭小燕%木泰华%孙红男%张苗%于明%何伟忠
彭小燕%木泰華%孫紅男%張苗%于明%何偉忠
팽소연%목태화%손홍남%장묘%우명%하위충
超高压处理%甜菜果胶%分子量%乙酰化度%乳化特性
超高壓處理%甜菜果膠%分子量%乙酰化度%乳化特性
초고압처리%첨채과효%분자량%을선화도%유화특성
HHP treatment%sugar beet pectin%molecular weight%degree of acetylation%emulsifying properties
【目的】明确超高压处理对甜菜果胶结构和乳化特性的影响,为甜菜果胶在食品工业中的应用提供理论依据。【方法】配制1%(w/v)甜菜果胶溶液,比较不同压力(0.1、250、350、450和550 MPa)、pH 7条件下处理30 min,450 MPa、pH 7条件下处理不同时间(10、20、30和50 min),以及450 MPa、不同 pH(pH 3、pH 7和 pH 8)条件下处理30 min 对甜菜果胶结构及乳化特性的影响。【结果】在不同压力条件下对 pH 7的甜菜果胶溶液进行处理,随着压力升高,甜菜果胶分子量由5.58×105 Da(0.1 MPa)降至1.56×105 Da(550 MPa);酯化度和乙酰化度分别由61.29%和18.17%(0.1 MPa)增至68.24%和21.72%(550 MPa);红外图谱显示甜菜果胶在1760—1730 cm-1和1630—1600 cm-1处的峰均比未加压处理的更为明显,在1560—1540 cm-1也出现一个明显的吸收峰;在250 MPa 处理30 min 后,甜菜果胶的乳化活性由209 m2·g-1增至230 m2·g-1,乳化稳定性由79 min增至97 min,乳化液粒径 D4,3降低,比表面积 Sv 升高。继续增加压力,果胶的乳化特性变化不显著。在450 MPa下对 pH 7的甜菜果胶做不同时间处理,发现随加压时间延长,甜菜果胶分子量、酯化度、乙酰化度、乳化活性及稳定性均未发生显著变化。在450 MPa 加压处理30 min 后,pH 3、7和8条件下果胶分子量分别由原来的5.88、5.58和5.44×105 Da 降至2.38、2.25和2.49×105 Da;pH 3和 pH 7的甜菜果胶酯化度变化不明显,乙酰化度显著升高,分别由19.35%和18.17%增至24.84%和21.70%;而 pH 8的甜菜果胶酯化度和乙酰化度显著降低,分别由70.13%和19.53%降至50.24%和16.41%;pH 3、pH 7和 pH 8的甜菜果胶在加压处理后乳化活性和乳化稳定性均显著提高,超高压处理后 pH 3和 pH 7的甜菜果胶乳化活性较高,pH 3甜菜果胶乳化稳定性最好。【结论】超高压处理降低了甜菜果胶的分子量,使果胶中的蛋白暴露,改善了甜菜果胶的乳化特性。
【目的】明確超高壓處理對甜菜果膠結構和乳化特性的影響,為甜菜果膠在食品工業中的應用提供理論依據。【方法】配製1%(w/v)甜菜果膠溶液,比較不同壓力(0.1、250、350、450和550 MPa)、pH 7條件下處理30 min,450 MPa、pH 7條件下處理不同時間(10、20、30和50 min),以及450 MPa、不同 pH(pH 3、pH 7和 pH 8)條件下處理30 min 對甜菜果膠結構及乳化特性的影響。【結果】在不同壓力條件下對 pH 7的甜菜果膠溶液進行處理,隨著壓力升高,甜菜果膠分子量由5.58×105 Da(0.1 MPa)降至1.56×105 Da(550 MPa);酯化度和乙酰化度分彆由61.29%和18.17%(0.1 MPa)增至68.24%和21.72%(550 MPa);紅外圖譜顯示甜菜果膠在1760—1730 cm-1和1630—1600 cm-1處的峰均比未加壓處理的更為明顯,在1560—1540 cm-1也齣現一箇明顯的吸收峰;在250 MPa 處理30 min 後,甜菜果膠的乳化活性由209 m2·g-1增至230 m2·g-1,乳化穩定性由79 min增至97 min,乳化液粒徑 D4,3降低,比錶麵積 Sv 升高。繼續增加壓力,果膠的乳化特性變化不顯著。在450 MPa下對 pH 7的甜菜果膠做不同時間處理,髮現隨加壓時間延長,甜菜果膠分子量、酯化度、乙酰化度、乳化活性及穩定性均未髮生顯著變化。在450 MPa 加壓處理30 min 後,pH 3、7和8條件下果膠分子量分彆由原來的5.88、5.58和5.44×105 Da 降至2.38、2.25和2.49×105 Da;pH 3和 pH 7的甜菜果膠酯化度變化不明顯,乙酰化度顯著升高,分彆由19.35%和18.17%增至24.84%和21.70%;而 pH 8的甜菜果膠酯化度和乙酰化度顯著降低,分彆由70.13%和19.53%降至50.24%和16.41%;pH 3、pH 7和 pH 8的甜菜果膠在加壓處理後乳化活性和乳化穩定性均顯著提高,超高壓處理後 pH 3和 pH 7的甜菜果膠乳化活性較高,pH 3甜菜果膠乳化穩定性最好。【結論】超高壓處理降低瞭甜菜果膠的分子量,使果膠中的蛋白暴露,改善瞭甜菜果膠的乳化特性。
【목적】명학초고압처리대첨채과효결구화유화특성적영향,위첨채과효재식품공업중적응용제공이론의거。【방법】배제1%(w/v)첨채과효용액,비교불동압력(0.1、250、350、450화550 MPa)、pH 7조건하처리30 min,450 MPa、pH 7조건하처리불동시간(10、20、30화50 min),이급450 MPa、불동 pH(pH 3、pH 7화 pH 8)조건하처리30 min 대첨채과효결구급유화특성적영향。【결과】재불동압력조건하대 pH 7적첨채과효용액진행처리,수착압력승고,첨채과효분자량유5.58×105 Da(0.1 MPa)강지1.56×105 Da(550 MPa);지화도화을선화도분별유61.29%화18.17%(0.1 MPa)증지68.24%화21.72%(550 MPa);홍외도보현시첨채과효재1760—1730 cm-1화1630—1600 cm-1처적봉균비미가압처리적경위명현,재1560—1540 cm-1야출현일개명현적흡수봉;재250 MPa 처리30 min 후,첨채과효적유화활성유209 m2·g-1증지230 m2·g-1,유화은정성유79 min증지97 min,유화액립경 D4,3강저,비표면적 Sv 승고。계속증가압력,과효적유화특성변화불현저。재450 MPa하대 pH 7적첨채과효주불동시간처리,발현수가압시간연장,첨채과효분자량、지화도、을선화도、유화활성급은정성균미발생현저변화。재450 MPa 가압처리30 min 후,pH 3、7화8조건하과효분자량분별유원래적5.88、5.58화5.44×105 Da 강지2.38、2.25화2.49×105 Da;pH 3화 pH 7적첨채과효지화도변화불명현,을선화도현저승고,분별유19.35%화18.17%증지24.84%화21.70%;이 pH 8적첨채과효지화도화을선화도현저강저,분별유70.13%화19.53%강지50.24%화16.41%;pH 3、pH 7화 pH 8적첨채과효재가압처리후유화활성화유화은정성균현저제고,초고압처리후 pH 3화 pH 7적첨채과효유화활성교고,pH 3첨채과효유화은정성최호。【결론】초고압처리강저료첨채과효적분자량,사과효중적단백폭로,개선료첨채과효적유화특성。
[Objective] This study aimed to clear the effect of high hydrostatic pressure (HHP) on the structural and emulsifying properties of sugar beet pectin, and provide a theoretical basis for the applications of sugar beet pectin in food industry.[Method] 1% (w/v) of sugar beet pectin solution was prepared, and treated under different pressures (0.1, 250, 350, 450 and 550 MPa) and pH 7 for 30 min; 450 MPa and pH 7 for different times (10, 20, 30 and 50 min); 450 MPa and different pH values (pH 3, pH 7 and pH 8) for 30 min. After that, the structural and emulsifying properties were compared with the untreated samples. [Result]When the sugar beet pectin solution was treated under different pressure conditions at pH 7, with the increase of pressure, the Mw of sugar beet pectin was reduced from 5.58×105 Da (0.1 MPa) to 1.56×105 Da (550 MPa), and the degree of esterification (DE) and acetylation (DA) were increased from 61.29% and 18.17% (0.1 MPa) to 68.24% and 21.72% (550 MPa), respectively. FT-IR spectra in 1 760-1 730 cm-1 and 1 630-1 600 cm-1 regions of SBP showed more clearly than untreated SBP, and FT-IR images spectra in 1 560-1 540 cm-1 was appeared after the HHP treatment. After 250 MPa treated for 30 min, the emulsifying activity (EA) and the emulsifying stability (ES) of SBP were increased from 209 m2·g-1 and 79 min to 230 m2·g-1 and 97 min, the volume mean diameter (D4,3) was decreased and the specific surface (Sv) was increased. However, the emulsifying properties of pectin were not significantly changed after continued to increase pressure. There were no significant differences in Mw, DA, DE and emulsifying properties between different processing times under 450 MPa. Mw of SBP under pH 3, pH 7 and pH 8 conditions were reduced from 5.88, 5.58 and 5.44×105 Da to 2.38, 2.25 and 2.49×105 Da after 450 MPa treated for 30 min; the DE of SBP did not change significantly under pH 3 and pH 7 conditions, the DA was increased from 19.35% and 18.17% to 21.70% and 24.84%, respectively;but the DA and DE were reduced from 70.13% and 19.53% down to 50.24% and 16.41% under pH 8 condition; the EA and ES of SBP were significantly improved after high pressure treatment at pH 3, pH 7 and pH 8, the EA was better at pH 3 and pH 7 conditions, and the ES was the best at pH 3. [Conclusion] These results suggest that HHP treatment reduced the molecular weight of sugar beet pectin, induced the protein exposure, and also improved the emulsifying properties of sugar beet pectin.