海洋科学进展
海洋科學進展
해양과학진전
JOURNAL OF OCEANOGRAPHY OF HUANGHAI & BOHAI SEAS
2015年
2期
195-206
,共12页
王霄鹏%张杰%任广波%马毅
王霄鵬%張傑%任廣波%馬毅
왕소붕%장걸%임엄파%마의
高光谱%CHRIS%包络线去除%滨海湿地%分类
高光譜%CHRIS%包絡線去除%濱海濕地%分類
고광보%CHRIS%포락선거제%빈해습지%분류
CHRIS%continuum removal%coastal wetland%classification
对覆盖黄河口滨海湿地的PROBA CHRIS高光谱遥感影像进行包络线去除变换,采用6种常用的基于光谱特征空间的监督分类算法对变换前后的影像数据进行滨海湿地典型地物分类,通过目视对比分析和定量分析相结合的方法分析比较变换前后的分类结果,评价包络线去除方法对该类算法影响的效果和能力。结果表明,包络线去除方法能够提高部分监督分类算法针对滨海湿地典型植被类型的区分和识别能力;但由于滨海湿地内具有面积较大的裸滩和浑浊水体,这两类地物在影像中的光谱特征相近,而包络线去除方法并不能解决二者的误分问题,因此并不能提高该类算法针对CHRIS高光谱遥感影像的总体分类精度。
對覆蓋黃河口濱海濕地的PROBA CHRIS高光譜遙感影像進行包絡線去除變換,採用6種常用的基于光譜特徵空間的鑑督分類算法對變換前後的影像數據進行濱海濕地典型地物分類,通過目視對比分析和定量分析相結閤的方法分析比較變換前後的分類結果,評價包絡線去除方法對該類算法影響的效果和能力。結果錶明,包絡線去除方法能夠提高部分鑑督分類算法針對濱海濕地典型植被類型的區分和識彆能力;但由于濱海濕地內具有麵積較大的裸灘和渾濁水體,這兩類地物在影像中的光譜特徵相近,而包絡線去除方法併不能解決二者的誤分問題,因此併不能提高該類算法針對CHRIS高光譜遙感影像的總體分類精度。
대복개황하구빈해습지적PROBA CHRIS고광보요감영상진행포락선거제변환,채용6충상용적기우광보특정공간적감독분류산법대변환전후적영상수거진행빈해습지전형지물분류,통과목시대비분석화정량분석상결합적방법분석비교변환전후적분류결과,평개포락선거제방법대해류산법영향적효과화능력。결과표명,포락선거제방법능구제고부분감독분류산법침대빈해습지전형식피류형적구분화식별능력;단유우빈해습지내구유면적교대적라탄화혼탁수체,저량류지물재영상중적광보특정상근,이포락선거제방법병불능해결이자적오분문제,인차병불능제고해류산법침대CHRIS고광보요감영상적총체분류정도。
The continuum removal method was applied on the PROBA CHRIS hyperspectral remote sensing image of the coastal w etland in the Yellow River Estuary .Six classical supervised classification methods were implemented on the image before and after the continuum removal transformation for the land cover classification ,and then the classification results were compared by artificial interpretation and quantitative analysis .The aim of this research is to evaluate the effect of the continuum removal transformation on the supervised classification .Experimental results show that ,the continuum removal transformation is capable of improving the classification ability of certain supervised classification algorisms in the coastal w etlands classification by hyperspectral images .But the continuum removal method cannot solve the issue of mis‐classification between the bare beach and turbid water ,which generally co‐exist in the coastal wetlands and share the similar characteristics .Therefore it could not improve the overall classification accuracy of the supervised classification methods on CHRIS hyperspectral images .