太赫兹科学与电子信息学报
太赫玆科學與電子信息學報
태혁자과학여전자신식학보
Information and Electronic Engineering
2015年
2期
240-244
,共5页
Mean Shift算法%目标跟踪%自适应跟踪算法%特征匹配
Mean Shift算法%目標跟蹤%自適應跟蹤算法%特徵匹配
Mean Shift산법%목표근종%자괄응근종산법%특정필배
Mean Shift algorithm%target tracking%auto-adaptive tracking algorithm%characteristics matching
为了实现对变尺度快速运动目标的良好跟踪,在对传统 Mean Shift跟踪算法改进的基础上,提出了一种运动目标自适应跟踪算法。该算法首先采用目标区域的像素点空域加权后的彩色图像作为初始帧目标模板,目标的真实位置利用 Mean Shift算法迭代求得,从而实现对快速运动目标的空间定位,然后将相邻帧的目标采用尺度不变特征变换(SIFT)算子进行特征匹配,根据目标的缩放因子实时更新下一帧的核带宽,修正算法跟踪窗口的尺寸,以适应目标尺度的变化,从而实现对快速运动目标的尺度定位。最后,通过实验表明,与传统的 Mean Shift跟踪算法相比,该算法的跟踪准确率达到97%以上,能够实现对变尺度快速运动目标的精确跟踪。
為瞭實現對變呎度快速運動目標的良好跟蹤,在對傳統 Mean Shift跟蹤算法改進的基礎上,提齣瞭一種運動目標自適應跟蹤算法。該算法首先採用目標區域的像素點空域加權後的綵色圖像作為初始幀目標模闆,目標的真實位置利用 Mean Shift算法迭代求得,從而實現對快速運動目標的空間定位,然後將相鄰幀的目標採用呎度不變特徵變換(SIFT)算子進行特徵匹配,根據目標的縮放因子實時更新下一幀的覈帶寬,脩正算法跟蹤窗口的呎吋,以適應目標呎度的變化,從而實現對快速運動目標的呎度定位。最後,通過實驗錶明,與傳統的 Mean Shift跟蹤算法相比,該算法的跟蹤準確率達到97%以上,能夠實現對變呎度快速運動目標的精確跟蹤。
위료실현대변척도쾌속운동목표적량호근종,재대전통 Mean Shift근종산법개진적기출상,제출료일충운동목표자괄응근종산법。해산법수선채용목표구역적상소점공역가권후적채색도상작위초시정목표모판,목표적진실위치이용 Mean Shift산법질대구득,종이실현대쾌속운동목표적공간정위,연후장상린정적목표채용척도불변특정변환(SIFT)산자진행특정필배,근거목표적축방인자실시경신하일정적핵대관,수정산법근종창구적척촌,이괄응목표척도적변화,종이실현대쾌속운동목표적척도정위。최후,통과실험표명,여전통적 Mean Shift근종산법상비,해산법적근종준학솔체도97%이상,능구실현대변척도쾌속운동목표적정학근종。
An auto-adaptive tracking algorithm for fast moving target is put forward based on the improved traditional Mean Shift tracking algorithm, in order to achieve good tracking of fast moving target with variable scale. This algorithm firstly adopts the color image constituted by the pixels of target region with spatial weighting as initial frame object template, and the true position of target is obtained by the iteration of Mean Shift algorithm, therefore the spatial localization of fast moving target is realized. Then the features of adjacent frame targets are matched by Scale Invariant Feature Transform(SIFT) operator;the kernel bandwidth of next frame is updated in real time according to the scaling factor of target; the tracking window size of the algorithm is amended, which can adapt to the variable scales of the target, so the scale localization of fast moving target is achieved. Finally, the experiments demonstrate that compared with the traditional Mean Shift tracking algorithm, the tracking accuracy rate of the algorithm is above 97%, and the algorithm can accurately track the fast moving target with variable scales.