振动工程学报
振動工程學報
진동공정학보
JOURNAL OF VIBRATION ENGINEERING
2015年
2期
324-330
,共7页
郑直%姜万录%胡浩松%朱勇%李扬
鄭直%薑萬錄%鬍浩鬆%硃勇%李颺
정직%강만록%호호송%주용%리양
故障诊断%滚动轴承%集总经验模态分解%形态谱%核模糊 C 均值聚类
故障診斷%滾動軸承%集總經驗模態分解%形態譜%覈模糊 C 均值聚類
고장진단%곤동축승%집총경험모태분해%형태보%핵모호 C 균치취류
fault diagnosis%rolling bearings%ensemble empirical mode decomposition%morphological spectrum%kernel fuzzy C-means clustering
针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊 C 均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行 EEMD 分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次,基于峭度、能量和均方差三个评价指标,从分解得到的若干个 IMF 分量中选出含有故障特征信息最丰富的3个 IMF 分量作为诊断用的数据源;然后在选定尺度范围内提取每个 IMF分量的形态谱平均值,将三个形态谱平均值构成一个三维特征向量,作为一个样本,形成样本集;最后,利用 KFC-MC 完成对滚动轴承不同故障的分类识别。此外,为了对比说明该方法的识别效果,还将振动信号用经验模态分解(EMD)方法进行分解,用模糊 C 均值聚类(FCMC)进行分类识别,结果表明所提方法的识别效果要优于 EMD 形态谱和 FCMC 相结合的方法。通过对实测的滚动轴承振动信号的实验验证,表明该方法可以实现对滚动轴承故障的有效诊断。
針對滾動軸承的故障診斷問題,提齣瞭一種基于集總經驗模態分解(EEMD)、形態譜特徵提取和覈模糊 C 均值聚類(KFCMC)集成的故障診斷新方法。首先,對實測的滾動軸承振動信號進行 EEMD 分解,得到若榦箇代錶不同振動模態的內稟模態函數(IMF);其次,基于峭度、能量和均方差三箇評價指標,從分解得到的若榦箇 IMF 分量中選齣含有故障特徵信息最豐富的3箇 IMF 分量作為診斷用的數據源;然後在選定呎度範圍內提取每箇 IMF分量的形態譜平均值,將三箇形態譜平均值構成一箇三維特徵嚮量,作為一箇樣本,形成樣本集;最後,利用 KFC-MC 完成對滾動軸承不同故障的分類識彆。此外,為瞭對比說明該方法的識彆效果,還將振動信號用經驗模態分解(EMD)方法進行分解,用模糊 C 均值聚類(FCMC)進行分類識彆,結果錶明所提方法的識彆效果要優于 EMD 形態譜和 FCMC 相結閤的方法。通過對實測的滾動軸承振動信號的實驗驗證,錶明該方法可以實現對滾動軸承故障的有效診斷。
침대곤동축승적고장진단문제,제출료일충기우집총경험모태분해(EEMD)、형태보특정제취화핵모호 C 균치취류(KFCMC)집성적고장진단신방법。수선,대실측적곤동축승진동신호진행 EEMD 분해,득도약간개대표불동진동모태적내품모태함수(IMF);기차,기우초도、능량화균방차삼개평개지표,종분해득도적약간개 IMF 분량중선출함유고장특정신식최봉부적3개 IMF 분량작위진단용적수거원;연후재선정척도범위내제취매개 IMF분량적형태보평균치,장삼개형태보평균치구성일개삼유특정향량,작위일개양본,형성양본집;최후,이용 KFC-MC 완성대곤동축승불동고장적분류식별。차외,위료대비설명해방법적식별효과,환장진동신호용경험모태분해(EMD)방법진행분해,용모호 C 균치취류(FCMC)진행분류식별,결과표명소제방법적식별효과요우우 EMD 형태보화 FCMC 상결합적방법。통과대실측적곤동축승진동신호적실험험증,표명해방법가이실현대곤동축승고장적유효진단。
Aiming at the fault diagnosis of rolling bearings,a fusion method based on ensemble empirical mode decomposition (EEMD),morphological spectrum and kernel fuzzy C-means clustering (KFCMC)clustering is proposed.Firstly,a vibration signal is decomposed by EEMD to get several intrinsic mode functions (IMFs)which have physical meanings.Secondly,with a fusion evaluation method based on kurtosis,power and standard deviation,the three IMFs which are rich in fault features are selected as data source,the mean values of morphological spectrums in some scales of the three IMFs are extracted,and then the three values constitute a sample,thus sample set can be got.Lastly,all the samples of different working conditions are clustered by the KFCMC to diagnose the rolling bearing faults.In addition,the signals are also decomposed by empirical mode decomposition (EMD),and the samples are also clustered by fuzzy C-means clustering (FCMC),and the results show that the proposed method performs better than EMD and FCMC.The signals of the rolling bearings are tested and verified,and the conclusion is that the fusion method of EEMD and KFCMC is superior to that of EMD and FCMC.The proposed method can diagnosis the faults of rolling bearings efficiently.