高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2015年
2期
406-411
,共6页
方大俊%崔国民%许海珠%万义群%彭富裕
方大俊%崔國民%許海珠%萬義群%彭富裕
방대준%최국민%허해주%만의군%팽부유
换热网络%约束条件%惩罚函数%惩罚因子%微分进化
換熱網絡%約束條件%懲罰函數%懲罰因子%微分進化
환열망락%약속조건%징벌함수%징벌인자%미분진화
heat exchanger networks%constraint condition%penalty function%penalty factor%evolution differential
惩罚函数法优化有约束换热网络时,罚因子的取值过大降低计算效率,过小降低优化精度,设置合适的罚因子值却不容易。基于微分进化算法优化连续变量的启发,采用罚因子协同进化机制,同步优化罚因子与解变量,应用于换热网络优化问题。协进化机制优化主要思想如下:建立两类种群,一类为罚因子种群,一类为换热面积种群。优化过程中,每一组换热面积种群用来评价每一个罚因子个体,逐个优化所有解种群,得到所有罚因子个体的评价值,再根据微分进化的思想,对罚因子执行变异、交叉、选择过程,进化罚因子。两类种群如此反复交替优化,直到满足终止条件。算例证明,协进化机制应用于换热网络优化能进一步提高优化效率与精度,也为混合算法选取合适的罚因子优化换热网络提供了一种新思路。
懲罰函數法優化有約束換熱網絡時,罰因子的取值過大降低計算效率,過小降低優化精度,設置閤適的罰因子值卻不容易。基于微分進化算法優化連續變量的啟髮,採用罰因子協同進化機製,同步優化罰因子與解變量,應用于換熱網絡優化問題。協進化機製優化主要思想如下:建立兩類種群,一類為罰因子種群,一類為換熱麵積種群。優化過程中,每一組換熱麵積種群用來評價每一箇罰因子箇體,逐箇優化所有解種群,得到所有罰因子箇體的評價值,再根據微分進化的思想,對罰因子執行變異、交扠、選擇過程,進化罰因子。兩類種群如此反複交替優化,直到滿足終止條件。算例證明,協進化機製應用于換熱網絡優化能進一步提高優化效率與精度,也為混閤算法選取閤適的罰因子優化換熱網絡提供瞭一種新思路。
징벌함수법우화유약속환열망락시,벌인자적취치과대강저계산효솔,과소강저우화정도,설치합괄적벌인자치각불용역。기우미분진화산법우화련속변량적계발,채용벌인자협동진화궤제,동보우화벌인자여해변량,응용우환열망락우화문제。협진화궤제우화주요사상여하:건립량류충군,일류위벌인자충군,일류위환열면적충군。우화과정중,매일조환열면적충군용래평개매일개벌인자개체,축개우화소유해충군,득도소유벌인자개체적평개치,재근거미분진화적사상,대벌인자집행변이、교차、선택과정,진화벌인자。량류충군여차반복교체우화,직도만족종지조건。산예증명,협진화궤제응용우환열망락우화능진일보제고우화효솔여정도,야위혼합산법선취합괄적벌인자우화환열망락제공료일충신사로。
Penalty function methods are usually employed to convert constraint problems to unconstraint problems in heat exchanger networks (HENs) optimization. However, it is difficult to set proper penalty factors, since large penalty factors reduce compute efficiency and small ones decrease optimization accuracy. A cooperative mechanism, i.e. a differential evolution algorithm was developed to optimize penalty factor and HENs area variables simultaneously. Two populations are established: penalty factor population and HENs area variable population. Each penalty factor was evaluated by optimizing the corresponding HENs area variable population. The penalty factor was optimized through mutation, crossover, and selection process based on the differential evolution method. These two steps were repeated until the terminal conditions were satisfied. The results demonstrate that the cooperative differential evolution can further improve the optimization efficiency and accuracy, and also provides a new method to select appropriate penalty factors.