高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2015年
2期
253-258
,共6页
张密%诸凯%梁飞%王雅博%安娜
張密%諸凱%樑飛%王雅博%安娜
장밀%제개%량비%왕아박%안나
生物组织%热应力%线性热膨胀系数%杨氏模量
生物組織%熱應力%線性熱膨脹繫數%楊氏模量
생물조직%열응력%선성열팽창계수%양씨모량
biological material%thermal stress%linear thermal expansion coefficient%Young's modulus
目前许多学者致力于研究低温保存过程中生物组织材料的力学性能。在冷灌注过程中,内部温度的不均匀导致组织产生热应力,对生物组织造成损伤。为了更好地了解这一现象,研究重点定量考察温度与线性热膨胀系数和杨氏模量的关系,并应用一种新的方法测量肾脏组织在降温过程中产生的热应变。这种方法是利用低温显微系统获取不同降温速率下的肾脏组织图像,然后应用 Vic-2D 软件分析肾脏组织在特定温度和参照温度下所拍图像之间的微小形变,从而获得热应变数值。而杨氏模量是利用静态拉伸法测定不同温度下组织应力及应变,拟合出其杨氏模量数值。实验结果显示在0~20℃内,线性热膨胀系数是随着温度的降低而升高的;而杨氏模量在这个温度范围内保持恒定。
目前許多學者緻力于研究低溫保存過程中生物組織材料的力學性能。在冷灌註過程中,內部溫度的不均勻導緻組織產生熱應力,對生物組織造成損傷。為瞭更好地瞭解這一現象,研究重點定量攷察溫度與線性熱膨脹繫數和楊氏模量的關繫,併應用一種新的方法測量腎髒組織在降溫過程中產生的熱應變。這種方法是利用低溫顯微繫統穫取不同降溫速率下的腎髒組織圖像,然後應用 Vic-2D 軟件分析腎髒組織在特定溫度和參照溫度下所拍圖像之間的微小形變,從而穫得熱應變數值。而楊氏模量是利用靜態拉伸法測定不同溫度下組織應力及應變,擬閤齣其楊氏模量數值。實驗結果顯示在0~20℃內,線性熱膨脹繫數是隨著溫度的降低而升高的;而楊氏模量在這箇溫度範圍內保持恆定。
목전허다학자치력우연구저온보존과정중생물조직재료적역학성능。재랭관주과정중,내부온도적불균균도치조직산생열응력,대생물조직조성손상。위료경호지료해저일현상,연구중점정량고찰온도여선성열팽창계수화양씨모량적관계,병응용일충신적방법측량신장조직재강온과정중산생적열응변。저충방법시이용저온현미계통획취불동강온속솔하적신장조직도상,연후응용 Vic-2D 연건분석신장조직재특정온도화삼조온도하소박도상지간적미소형변,종이획득열응변수치。이양씨모량시이용정태랍신법측정불동온도하조직응력급응변,의합출기양씨모량수치。실험결과현시재0~20℃내,선성열팽창계수시수착온도적강저이승고적;이양씨모량재저개온도범위내보지항정。
Many researchers studied mechanical behaviors of biological materials during cryopreservation processes, as inhomogeneous internal temperature fields during cold perfusion may cause thermal stress. This study aims to quantify and explain the temperature dependence of linear thermal expansion coefficient and Young’s modulus. A new method for thermal strain measurements of kidney tissue during cooling process was presented. In order to calculate thermal strain during cooling, cryomicroscopy was used to obtain images at different cooling rates. Vic-2D software was used to analyze the tiny displacement between the image at specified temperature and the reference. The stress and strain obtained by the static tension method was used to fit the Young's modulus at different low temperatures. The results show that the linear thermal expansion coefficient increases as the temperature decreases from 20℃ to 0℃ and the Young’s Modulus keeps constant at this temperature range.