高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2015年
2期
312-319
,共8页
张本贺%何宇晨%毕纪葛%吴可君%徐国华
張本賀%何宇晨%畢紀葛%吳可君%徐國華
장본하%하우신%필기갈%오가군%서국화
硝化反应釜%本质安全设计%搅拌桨%盘管
硝化反應釜%本質安全設計%攪拌槳%盤管
초화반응부%본질안전설계%교반장%반관
stirred tank nitration reactor%inherently safer design%agitator%helical coils
硝化反应过程广泛应用于国防工业中高性能含能材料的合成,但其具有放热量大,放热速率快,反应易发生失控,硝化产物多易燃易爆的特性,所以硝化反应釜的合理设计非常重要。今将化工过程本质安全设计中的强化、最小化、提高可靠性、限制影响原则应用到硝化反应釜设计中,以降低反应热危险,达到减少危险发生概率,提高反应釜本质安全特性的目标。通过参考常规设计手册并结合硝化反应的特殊性及工程经验,提出了硝化反应釜设计的推荐流程。重点对反应釜中的搅拌系统进行了分析研究,结合流体力学软件FLUENT模拟,通过优化搅拌桨的桨径、组合方式及安装位置来强化釜内流体流动,并对硝化反应釜中常用的四斜叶桨(PBTD45)的径向及轴向影响范围进行了讨论,给出了选择搅拌桨桨径的方法,提出了一些与常规设计经验相比更加细化的设计参数。该研究结果对硝化反应釜的优化设计有较好的参考价值。
硝化反應過程廣汎應用于國防工業中高性能含能材料的閤成,但其具有放熱量大,放熱速率快,反應易髮生失控,硝化產物多易燃易爆的特性,所以硝化反應釜的閤理設計非常重要。今將化工過程本質安全設計中的彊化、最小化、提高可靠性、限製影響原則應用到硝化反應釜設計中,以降低反應熱危險,達到減少危險髮生概率,提高反應釜本質安全特性的目標。通過參攷常規設計手冊併結閤硝化反應的特殊性及工程經驗,提齣瞭硝化反應釜設計的推薦流程。重點對反應釜中的攪拌繫統進行瞭分析研究,結閤流體力學軟件FLUENT模擬,通過優化攪拌槳的槳徑、組閤方式及安裝位置來彊化釜內流體流動,併對硝化反應釜中常用的四斜葉槳(PBTD45)的徑嚮及軸嚮影響範圍進行瞭討論,給齣瞭選擇攪拌槳槳徑的方法,提齣瞭一些與常規設計經驗相比更加細化的設計參數。該研究結果對硝化反應釜的優化設計有較好的參攷價值。
초화반응과정엄범응용우국방공업중고성능함능재료적합성,단기구유방열량대,방열속솔쾌,반응역발생실공,초화산물다역연역폭적특성,소이초화반응부적합리설계비상중요。금장화공과정본질안전설계중적강화、최소화、제고가고성、한제영향원칙응용도초화반응부설계중,이강저반응열위험,체도감소위험발생개솔,제고반응부본질안전특성적목표。통과삼고상규설계수책병결합초화반응적특수성급공정경험,제출료초화반응부설계적추천류정。중점대반응부중적교반계통진행료분석연구,결합류체역학연건FLUENT모의,통과우화교반장적장경、조합방식급안장위치래강화부내류체류동,병대초화반응부중상용적사사협장(PBTD45)적경향급축향영향범위진행료토론,급출료선택교반장장경적방법,제출료일사여상규설계경험상비경가세화적설계삼수。해연구결과대초화반응부적우화설계유교호적삼고개치。
Nitration reaction processes are widely used in the synthesis of high performance energetic material in national defense industry. Rational design of stirred tank nitration reactor is crucial due to the strong exothermic, fast heat release rate and easy runaway properties. In addition, products are flammable and explosive. The principles of inherently safer design such as process intensification, minimization, greater reliability, limitation of effects were applied into the design of stirred tank nitration reactors to lower the risk probability and improve the inherent safety of reactors. The general design process was proposed based on conventional design manual together with engineering experience. The mixing system was investigated in detail with FLUENT simulation. Agitator blade diameter, combination mode and installation position were optimized to improve fluid flow in the reactor. The radial and axial fluid velocity distribution were discussed when the agitator PBTD45 was used. The method for agitator diameter selection was proposed, and other more specific design parameters were given compared with conventional design experience.