作物学报
作物學報
작물학보
ACTA AGRONOMICA SINICA
2015年
4期
623-632
,共10页
海河低平原%深松播种%夏玉米%根系%生理生态%节水增产效应
海河低平原%深鬆播種%夏玉米%根繫%生理生態%節水增產效應
해하저평원%심송파충%하옥미%근계%생리생태%절수증산효응
Haihe Lowland Plain%Subsoiling-seeding%Summer maize%Root%Physiological ecology%Water-saving and yield-increasing effect
于2012—2013年在河北省农林科学院旱作农业研究所深州试验站,以郑单958为供试品种,设置夏玉米深松播种和免耕播种两个处理,从玉米出苗开始,根据生育进程定期观察玉米根系形态、生理指标及微观结构、玉米冠层光合特性和叶面积指数,成熟期测定产量,计算水分利用效率和2 m土体水分储蓄情况。结果表明,0~60 cm土层,深松播种处理可提高玉米根系干物质积累、表面积、根长和活跃吸收面积比例,全生育期分别比免耕播种处理提高30.5%、24.6%、29.7%和56.3%。0~60 cm土层,深松播种处理玉米根系脯氨酸含量、硝酸还原酶活性和根系活力分别比免耕处理高140.0%、37.0%和36.5%。全生育期,深松播种处理根系伤流液总量比免耕播种处理提高15.2%。0~40 cm土层,深松播种处理单根和整株根系导水率分别提高15.8%和17.0%。0~40 cm土层,深松播种处理玉米根系中柱导管直径增大,中柱鞘细胞壁及中柱内薄壁细胞的细胞壁增厚栓化,髓细胞数量增多但整体在髓腔横切面积中所占比例偏小,后生木质部导管直径增大、数量增多,皮层厚度降低;0~20 cm土层,深松播种处理根系皮层中部细胞虽也较大但层数较少,相当于免耕处理的86.2%。深松播种处理可提高玉米叶面积指数,全生育期平均比免耕处理高12.5%;深松播种处理还可提高叶片光合速率和光合势。深松播种处理玉米籽粒灌浆速率全生育期平均比免耕播种处理高5.0%。与免耕处理相比,深松播种处理2年平均穗粒数、千粒重和产量分别比免耕播种处理提高2.4%、3.9%和8.2%,耗水量降低9.1%,产量和水分利用效率分别比免耕处理高8.2%和14.4%,2 m土体贮水量提高31.7%。
于2012—2013年在河北省農林科學院旱作農業研究所深州試驗站,以鄭單958為供試品種,設置夏玉米深鬆播種和免耕播種兩箇處理,從玉米齣苗開始,根據生育進程定期觀察玉米根繫形態、生理指標及微觀結構、玉米冠層光閤特性和葉麵積指數,成熟期測定產量,計算水分利用效率和2 m土體水分儲蓄情況。結果錶明,0~60 cm土層,深鬆播種處理可提高玉米根繫榦物質積纍、錶麵積、根長和活躍吸收麵積比例,全生育期分彆比免耕播種處理提高30.5%、24.6%、29.7%和56.3%。0~60 cm土層,深鬆播種處理玉米根繫脯氨痠含量、硝痠還原酶活性和根繫活力分彆比免耕處理高140.0%、37.0%和36.5%。全生育期,深鬆播種處理根繫傷流液總量比免耕播種處理提高15.2%。0~40 cm土層,深鬆播種處理單根和整株根繫導水率分彆提高15.8%和17.0%。0~40 cm土層,深鬆播種處理玉米根繫中柱導管直徑增大,中柱鞘細胞壁及中柱內薄壁細胞的細胞壁增厚栓化,髓細胞數量增多但整體在髓腔橫切麵積中所佔比例偏小,後生木質部導管直徑增大、數量增多,皮層厚度降低;0~20 cm土層,深鬆播種處理根繫皮層中部細胞雖也較大但層數較少,相噹于免耕處理的86.2%。深鬆播種處理可提高玉米葉麵積指數,全生育期平均比免耕處理高12.5%;深鬆播種處理還可提高葉片光閤速率和光閤勢。深鬆播種處理玉米籽粒灌漿速率全生育期平均比免耕播種處理高5.0%。與免耕處理相比,深鬆播種處理2年平均穗粒數、韆粒重和產量分彆比免耕播種處理提高2.4%、3.9%和8.2%,耗水量降低9.1%,產量和水分利用效率分彆比免耕處理高8.2%和14.4%,2 m土體貯水量提高31.7%。
우2012—2013년재하북성농림과학원한작농업연구소심주시험참,이정단958위공시품충,설치하옥미심송파충화면경파충량개처리,종옥미출묘개시,근거생육진정정기관찰옥미근계형태、생리지표급미관결구、옥미관층광합특성화협면적지수,성숙기측정산량,계산수분이용효솔화2 m토체수분저축정황。결과표명,0~60 cm토층,심송파충처리가제고옥미근계간물질적루、표면적、근장화활약흡수면적비례,전생육기분별비면경파충처리제고30.5%、24.6%、29.7%화56.3%。0~60 cm토층,심송파충처리옥미근계포안산함량、초산환원매활성화근계활력분별비면경처리고140.0%、37.0%화36.5%。전생육기,심송파충처리근계상류액총량비면경파충처리제고15.2%。0~40 cm토층,심송파충처리단근화정주근계도수솔분별제고15.8%화17.0%。0~40 cm토층,심송파충처리옥미근계중주도관직경증대,중주초세포벽급중주내박벽세포적세포벽증후전화,수세포수량증다단정체재수강횡절면적중소점비례편소,후생목질부도관직경증대、수량증다,피층후도강저;0~20 cm토층,심송파충처리근계피층중부세포수야교대단층수교소,상당우면경처리적86.2%。심송파충처리가제고옥미협면적지수,전생육기평균비면경처리고12.5%;심송파충처리환가제고협편광합속솔화광합세。심송파충처리옥미자립관장속솔전생육기평균비면경파충처리고5.0%。여면경처리상비,심송파충처리2년평균수립수、천립중화산량분별비면경파충처리제고2.4%、3.9%화8.2%,모수량강저9.1%,산량화수분이용효솔분별비면경처리고8.2%화14.4%,2 m토체저수량제고31.7%。
The study was carried out in Shenzhou Experimental Station, Arid Farming Research Institute, Hebei Academy of Agri-cultural and Forestry Sciences in 2012–2013. The maize variety Zhengdan 958 was used in this experiment with two treatments including sub-soiling seeding (SRT) and no-tillage seeding (NT). From seedling emergence to maturity, the root morphology, physiological parameters and microstructure, canopy photosynthetic characteristics, and leaf area index were regularly measured. At maturity, the yields and the water use efficiency and water storage in 2 m soil layer were investigated. The results showed that SRT increased the root dry mass, surface area, length and active absoiling area ratio in 0–60 cm soil layer, with the increase of 30.5%, 24.6%, 29.7%, and 56.3%, respectively, in comparison with NT. In addition, SRT also increased the proline content, nitrate reductase activity and activity of roots compared with NT in this soil layer, with the increase of 140.0%, 37.0%, and 36.5%, respectively. The total root bleeding sap in SRT increased by 15.2% compared with NT in the whole growth stage. In 0–40 cm soil layer, the hydraulic conductivity in single root and the roots per plant around whole growth stage in SRT increased by 15.8% and 17.0% respectively, in comparison with NT. In SRT, the diameter of stele vessel was increased, cell walls of pericycle and stele parenchyma were thickened, and the number of pith cells were increased, but its section area ratio in stale decreased compared with NT. Moreover, the numbers and diameter of xylem vessel in SRT increased, but the cortical thickness in roots decreased. In 0–20 cm soil layer, although the middle cortical cells of root in SRT were larger than those of NT, but there number was only 86.2% of NT. SRT also increased the LAI and photosynthetic rate. The grain-filling rate in SRT treatment was also increased, with 5.0% higher than in NT. In two growth seasons, compared with NT, the spike kernels, 1000-grain weight, and yield in SRT treat-ment were increased by 2.4%, 3.9%, and 8.2%, respectively, whereas the water consumption was reduced by 9.1%, the water use efficiency was increased by 14.4%, and the water storage amount in 2 m soil layer was increased by 31.7%.