测绘学报
測繪學報
측회학보
ACTA GEODAETICA ET CARTOGRAPHICA SINICA
2015年
3期
292-300
,共9页
陈振炜%张过%宁津生%唐新明
陳振煒%張過%寧津生%唐新明
진진위%장과%저진생%당신명
云量检测%直方图均衡化%特征提取%多尺度
雲量檢測%直方圖均衡化%特徵提取%多呎度
운량검측%직방도균형화%특정제취%다척도
cloud detection%histogram equalization%feature extraction%multi-scale
光学卫星遥感影像自动云检测是卫星产品生产系统的一个重要环节。利用资源三号卫星编目生成的浏览图,采用树状判别结构进行云检测,对浏览图进行分块,提取子块图像的特征进行云地分类。由于云类和地物类过于繁杂,且浏览图的分辨率较低,传统通过图像特征对云地进行分类的算法有很大的局限性,针对这一问题,本文提出了在分类之前对原始的子块图像进行增强处理,扩大云和地物的纹理差异,然后以二阶矩、一阶差分等作为云地分类的图像特征,并在多尺度空间内进行特征延拓,经过综合分析估计云在影像中的比例。该云检测算法应用于资源三号卫星应用系统工程,实际测试结果表明,该算法能够较好地提升云量检测的准确率。
光學衛星遙感影像自動雲檢測是衛星產品生產繫統的一箇重要環節。利用資源三號衛星編目生成的瀏覽圖,採用樹狀判彆結構進行雲檢測,對瀏覽圖進行分塊,提取子塊圖像的特徵進行雲地分類。由于雲類和地物類過于繁雜,且瀏覽圖的分辨率較低,傳統通過圖像特徵對雲地進行分類的算法有很大的跼限性,針對這一問題,本文提齣瞭在分類之前對原始的子塊圖像進行增彊處理,擴大雲和地物的紋理差異,然後以二階矩、一階差分等作為雲地分類的圖像特徵,併在多呎度空間內進行特徵延拓,經過綜閤分析估計雲在影像中的比例。該雲檢測算法應用于資源三號衛星應用繫統工程,實際測試結果錶明,該算法能夠較好地提升雲量檢測的準確率。
광학위성요감영상자동운검측시위성산품생산계통적일개중요배절。이용자원삼호위성편목생성적류람도,채용수상판별결구진행운검측,대류람도진행분괴,제취자괴도상적특정진행운지분류。유우운류화지물류과우번잡,차류람도적분변솔교저,전통통과도상특정대운지진행분류적산법유흔대적국한성,침대저일문제,본문제출료재분류지전대원시적자괴도상진행증강처리,확대운화지물적문리차이,연후이이계구、일계차분등작위운지분류적도상특정,병재다척도공간내진행특정연탁,경과종합분석고계운재영상중적비례。해운검측산법응용우자원삼호위성응용계통공정,실제측시결과표명,해산법능구교호지제승운량검측적준학솔。
Automatic cloud detection for optical satellite remote sensing images is a significant step in the production system of satellite products .For the browse images cataloged by ZY‐3 satellite , the tree discriminate structure is adopted to carry out cloud detection .The image was divided into sub‐images and their features were extracted to perform cl assification between clouds and grounds .However ,due to the highcomplexityofcloudsandsurfacesandthelowresolutionofbrowseimages,thetraditionalclassifica‐tion algorithms based on image features are of great limitations .In view of the problem ,a prior enhance‐ment processing to original sub‐images before classification was put forward in this paper to widen the texture difference between clouds and surfaces .Afterwards ,with the secondary moment and first difference of the images ,the feature vectors were extended in multi‐scale space ,and then the cloud proportion in the image was estimated through comprehensive analysis .The presented cloud detection algorithmhas already been applied to the ZY‐3 application system project ,and the practical experiment results indicate that this algorithm is capable of promoting the accuracy of cloud detection significantly .