广西大学学报(自然科学版)
廣西大學學報(自然科學版)
엄서대학학보(자연과학판)
JOURNAL OF GUANGXI UNIVERSITY (NATURAL SCIENCE EDITION)
2015年
2期
412-420
,共9页
水力提升%水击%粗颗粒%AMESim
水力提升%水擊%粗顆粒%AMESim
수력제승%수격%조과립%AMESim
hydraulic hoisting%water hammer%coarse particle%AMESim
为降低深海采矿中矿物垂直水力提升中的水击现象,根据垂直管固液两相流的特征,考虑固液两相流密度、浓度、弹性模量等特点,对垂直管水力提升不稳定流开展研究。推导出粗颗粒—匀质浆体两相流提升水击压力波波速方程、连续方程和运动方程,并且基于AMESim软件搭建了垂直管道水击仿真模型。分析了不同管道长度、不同管道直径以及不同颗粒浓度下的水击特性。仿真结果表明:每增加18 m 管道长度,平均可以降低约12%的压力峰值,同时减小压力波对管道壁的冲击;每增加10 mm 管道直径,也可以降低约7%的压力峰值,但流速增加,紊流强度增大;粗颗粒浓度每增加6%,压力峰值相应增加约2%,与此同时对管道壁的冲击也增加。研究方法及结论对于实际深海采矿中的垂直管道提升具有指导借鉴意义。
為降低深海採礦中礦物垂直水力提升中的水擊現象,根據垂直管固液兩相流的特徵,攷慮固液兩相流密度、濃度、彈性模量等特點,對垂直管水力提升不穩定流開展研究。推導齣粗顆粒—勻質漿體兩相流提升水擊壓力波波速方程、連續方程和運動方程,併且基于AMESim軟件搭建瞭垂直管道水擊倣真模型。分析瞭不同管道長度、不同管道直徑以及不同顆粒濃度下的水擊特性。倣真結果錶明:每增加18 m 管道長度,平均可以降低約12%的壓力峰值,同時減小壓力波對管道壁的遲擊;每增加10 mm 管道直徑,也可以降低約7%的壓力峰值,但流速增加,紊流彊度增大;粗顆粒濃度每增加6%,壓力峰值相應增加約2%,與此同時對管道壁的遲擊也增加。研究方法及結論對于實際深海採礦中的垂直管道提升具有指導藉鑒意義。
위강저심해채광중광물수직수력제승중적수격현상,근거수직관고액량상류적특정,고필고액량상류밀도、농도、탄성모량등특점,대수직관수력제승불은정류개전연구。추도출조과립—균질장체량상류제승수격압력파파속방정、련속방정화운동방정,병차기우AMESim연건탑건료수직관도수격방진모형。분석료불동관도장도、불동관도직경이급불동과립농도하적수격특성。방진결과표명:매증가18 m 관도장도,평균가이강저약12%적압력봉치,동시감소압력파대관도벽적충격;매증가10 mm 관도직경,야가이강저약7%적압력봉치,단류속증가,문류강도증대;조과립농도매증가6%,압력봉치상응증가약2%,여차동시대관도벽적충격야증가。연구방법급결론대우실제심해채광중적수직관도제승구유지도차감의의。
In order to reduce the water hammer phenomenon in deep-sea mineral hydraulic hoisting, the unsteady coarse-grained solid-liquid flow in hydraulic hoisting is studied based on the character-istics of solid-liquid flows such as their density, concentration and elastic modulus. And the wave propagation speed equation, the continuity and momentum equation of water hammer in coarse-grained solid-liquid flows are theoretically derived. Based on the mathematical model of hydraulic transport in vertical pipe and the software of AMESim, the simulation models are built. The charac-teristics of water hammer with different pipe length, diameter and volume fraction are analyzed. Sim-ulation results indicate that by extending each additional pipe length 18 m, the pressure peak can be reduced about 12% on average and reduced the impact on the pipe wall of the pressure wave. And by extending each additional pipe diameter 10 mm, the pressure peak can be reduced about 7% on average, but the flow rate and the turbulence intensity will be increased. With each additional con-centration of coarse particles 6%, the pressure peak can be reduced about 2% on average, but the impact on the pipe wall will be increased. The research methods and conclusions of this paper have special reference to actual deep-sea mineral hydraulic hoisting.