噪声与振动控制
譟聲與振動控製
조성여진동공제
NOISE AND VIBRATION CONTROL
2015年
2期
160-164
,共5页
杨梅%陈思汉%吴昊%余建波
楊梅%陳思漢%吳昊%餘建波
양매%진사한%오호%여건파
振动与波%旋转机械%故障诊断%局部均值分解%自适应滤噪
振動與波%鏇轉機械%故障診斷%跼部均值分解%自適應濾譟
진동여파%선전궤계%고장진단%국부균치분해%자괄응려조
vibration and wave%rotating machinery%fault diagnosis%local mean decomposition%adaptively denoising
利用噪声统计特性及局部均值分解算法(local mean decomposition, LMD)在信号分解过程中的自适应性,提出了一种新的基于LMD的自适应滤噪算法。该算法完全由数据驱动,可对信号自适应降噪,并将降噪后的信号分解为若干个瞬时频率具有物理意义的PF (Product function)分量。重构的信号可有效提高功率谱故障诊断的性能。通过对2种非平稳信号的仿真实验及在实际运行状态下采集的旋转机械转子振动信号降噪的应用,结果表明提出的算法降噪性能优于中值降噪、均值降噪、小波降噪、EMD软阀值降噪等典型滤噪算法。该算法也可在频域有效地用于旋转机械转子故障的诊断。
利用譟聲統計特性及跼部均值分解算法(local mean decomposition, LMD)在信號分解過程中的自適應性,提齣瞭一種新的基于LMD的自適應濾譟算法。該算法完全由數據驅動,可對信號自適應降譟,併將降譟後的信號分解為若榦箇瞬時頻率具有物理意義的PF (Product function)分量。重構的信號可有效提高功率譜故障診斷的性能。通過對2種非平穩信號的倣真實驗及在實際運行狀態下採集的鏇轉機械轉子振動信號降譟的應用,結果錶明提齣的算法降譟性能優于中值降譟、均值降譟、小波降譟、EMD軟閥值降譟等典型濾譟算法。該算法也可在頻域有效地用于鏇轉機械轉子故障的診斷。
이용조성통계특성급국부균치분해산법(local mean decomposition, LMD)재신호분해과정중적자괄응성,제출료일충신적기우LMD적자괄응려조산법。해산법완전유수거구동,가대신호자괄응강조,병장강조후적신호분해위약간개순시빈솔구유물리의의적PF (Product function)분량。중구적신호가유효제고공솔보고장진단적성능。통과대2충비평은신호적방진실험급재실제운행상태하채집적선전궤계전자진동신호강조적응용,결과표명제출적산법강조성능우우중치강조、균치강조、소파강조、EMD연벌치강조등전형려조산법。해산법야가재빈역유효지용우선전궤계전자고장적진단。
A new adaptive signal denoising algorithm based on local mean decomposition (LMD) for machine fault di-agnosis was proposed. The method was fully data driven. The denoised signal could be decomposed adaptively into a set of single AM-FM components called product functions (PFs), and the reconstructed signals could effectively improve the pow-er spectrum performance of fault diagnosis. Through the simulation experiment on two different unstable signals and the ap-plication to denoising of real vibration signals acquired from the faulted rotors of rotating machines, this method was proved to have better performance than the averaging, median, wavelet and empirical mode decomposition (EMD) soft threshold ap-proaches. The experimental results show that this method can detect rotor fault features efficiently and can be applied to the fault diagnosis of the rotating machines.