西南交通大学学报
西南交通大學學報
서남교통대학학보
JOURNAL OF SOUTHWEST JIAOTONG UNIVERSITY
2015年
2期
382-387
,共6页
石万元%张凤超%田小红%沈骏
石萬元%張鳳超%田小紅%瀋駿
석만원%장봉초%전소홍%침준
相场模拟%静磁场%液滴%硅熔体
相場模擬%靜磁場%液滴%硅鎔體
상장모의%정자장%액적%규용체
phase field model%static magnetic field%droplet%molten silicon
为了解静磁场作用下熔融液滴振荡过程的特征,采用相场法数值模拟了硅熔体液滴的界面变形和内部对流过程,分析了轴向静磁场对初始形状为二阶Legendre函数硅熔体液滴界面振荡和内部对流的影响.研究表明:施加静磁场以后,液滴收缩较快,说明静磁场抑制了液滴内部流动;随着磁场强度从0增加至0.9 T,流函数最大值从0.57减小到0.08,液滴的界面振荡和内部对流逐渐减弱,液滴的长短轴比更快趋近于1,但磁场对液滴的振荡周期没有明显影响,显示相场法能够模拟密度较大的熔融液滴的界面振荡和内部对流过程.
為瞭解靜磁場作用下鎔融液滴振盪過程的特徵,採用相場法數值模擬瞭硅鎔體液滴的界麵變形和內部對流過程,分析瞭軸嚮靜磁場對初始形狀為二階Legendre函數硅鎔體液滴界麵振盪和內部對流的影響.研究錶明:施加靜磁場以後,液滴收縮較快,說明靜磁場抑製瞭液滴內部流動;隨著磁場彊度從0增加至0.9 T,流函數最大值從0.57減小到0.08,液滴的界麵振盪和內部對流逐漸減弱,液滴的長短軸比更快趨近于1,但磁場對液滴的振盪週期沒有明顯影響,顯示相場法能夠模擬密度較大的鎔融液滴的界麵振盪和內部對流過程.
위료해정자장작용하용융액적진탕과정적특정,채용상장법수치모의료규용체액적적계면변형화내부대류과정,분석료축향정자장대초시형상위이계Legendre함수규용체액적계면진탕화내부대류적영향.연구표명:시가정자장이후,액적수축교쾌,설명정자장억제료액적내부류동;수착자장강도종0증가지0.9 T,류함수최대치종0.57감소도0.08,액적적계면진탕화내부대류축점감약,액적적장단축비경쾌추근우1,단자장대액적적진탕주기몰유명현영향,현시상장법능구모의밀도교대적용융액적적계면진탕화내부대류과정.
In order to study the characteristics of oscillatory process of a molten silicon droplet under static magnetic field,the phase field method was adopted to numerically simulate the interface oscillation and internal fluid convection of a molten silicon droplet. The influence of an axial static magnetic field on the internal convection and interface oscillation of a molten silicon droplet with an initial shape of the second-order Legendre function was analyzed. The numerical result exhibits that the shrink of the droplet under static magnetic field is faster than that without magnetic field. The static magnetic field suppresses the fluid convection inside the droplet. As the imposed magnetic field intensity increases from 0 to 0. 9 T,the maximum values of stream function reduce from 0. 57 to 0. 08,and the internal convection and interface oscillation are weakened gradually. Under magnetic field,the ratio of long-axis to short-axis of droplet quickly tends to 1. However,the magnetic field has almost no influence on oscillation frequency of droplet. The investigation indicates that the phase-field modeling can effectively simulate the interface oscillation and internal convection of the molten droplet even with high density.